Quantum Superresolution Imaging in Fluorescence Microscopy
Download
Report
Transcript Quantum Superresolution Imaging in Fluorescence Microscopy
Quantum Super-resolution Imaging
in Fluorescence Microscopy
Osip Schwartz, Dan Oron, Jonathan M. Levitt, Ron Tenne,
Stella Itzhakov and Dan Oron
Dept. of Physics of Complex Systems
Weizmann Institute of Science, Israel
FRISNO 12, Ein Gedi (February 2013)
Microscopy and resolution
Resolution of far-field optical microscopes is limited by about half wavelength.
(Ernst Abbe, 1873)
Workarounds:
• Nonlinear optical methods: use nonlinear optical response to
produce narrower point spread function
• Stochastic methods: use fluorophores turning on and off randomly
• Quantum optics?
o Multi-photon interference
o Entangled images
o Sub shot noise imaging
o Resolution enhancement?
Slide 2 of 18
Afek et al., Science 328 (2010)
Walther et al., Nature 429 (2004)
Boyer et al., Science 321 (2008)
Brida et al., Nat. Photonics 4 (2010)
Quantum super-resolution
•
Quantum Limits on Optical Resolution
•
Wolf equations for two-photon light
•
Quantum Imaging beyond the Diffraction Limit by Optical Centroid Measurements
•
Quantum spatial superresolution by optical centroid measurements
•
Quantum imaging with incoherent photons,
Thiel et al., PRL 2007
•
Sub-Rayleigh quantum imaging using single-photon sources
Thiel et al., PRA 2009
•
Sub-Rayleigh-diffraction-bound quantum imaging,
•
Sub-Rayleigh Imaging via N-Photon Detection,
Quantum
light
Slide 3 of 18
Kolobov, Fabre, PRL2000
Saleh et al., PRL 2005
Object
M.Tsang PRL 2009
Shin et al., PRL 2011
Giovannetti, PRA 2009
Guerrieri et al., PRL 2010
Imaging
system
Light
detector
Quantum emitters
Classical light
Quantum light
Quantum
emitters
Imaging
system
Light
detector
What if we had an emitter that would always emit photon pairs?
S.W. Hell et al., Bioimaging (1995)
Slide 4 of 18
Multi-photon detection microscopy
Photon pair
τ1
τ2
τ1>>τ2
cascaded
emitters
Imaging
system
Photon pair
detector
Point spread function: h2phot(x) = h2(x)
Spatial distribution of photon pairs carries high spatial
frequency information (up to double resolution)
Similarly, in N-photon detection microscopy hNphot(x) = hN(x)
Slide 5 of 18
Antibunching microscopy
Observations of antibunching:
Number of photons emitted
after excitation:
Organic dyes:
W. Ambrose et al. (1997)
Quantum dots:
B. Lounis et al. (2000).
1
NV centers:
R. Brouri et al. (2000).
0.5
Classical
0
Fluorescence intensity autocorrelation
g(2)
0
1
2
Pair source
3
1
0.5
0
0
1
2
3
Single photon source
1
0.5
0
10 μs interval between pulses
Slide 6 of 18
0
1
2
3
Instead of actual photon pairs,
consider ‘missing’ pairs.
Antibunching-induced correlations
Two adjacent detectors in the image plane:
x0
For individual fluorophore:
For multiple fluorophores:
Sum over fluorophores
Slide 7 of 18
Emitters
Fluorescence saturation
CdSe / ZnSe / ZnS
quantum dots
1
0.8
0.6
0.4
0.2
0
450
Slide 8 of 18
500
550
600
Wavelength, nm
650
Schwartz et al.,ACS Nano 6 (2012)
At 1 kHz:
Slide 9 of 18
Schwartz et al.,ACS Nano 6 (2012)
Photon counting with a CCD
Pixel signal distribution
Read noise
threshold
CCD ADC units
More signal
Slide 10 of 18
Less noise
arXiv:1212.6003
Computing correlations
2nd order:
Quantifies the missing pairs
3rd order:
• compute correlations for all pixel configurations
• Fourier-interpolate the resulting images
• Sum the interpolated images
Slide 11 of 18
Missing 3-photon events
(except those due to missing
pairs, already accounted for)
arXiv:1212.6003
Antibunching with a CCD
Third order:
g(3)(τ1, τ2)=
=<n(t)n(t+τ1)n(t+ τ2)>
τ, ms
τ, ms
τ2, ms
g(2)(τ)=<n(t)n(t+ τ)>
Classical signal
τ2, ms
Second order
autocorrelation function:
Quantum dot
τ1, ms
Slide 12 of 18
τ1, ms
arXiv:1212.6003
1
8000
2
Fluorescence
image
6000
3
4
4000
5
2000
6
7
0
2
4
6
8
10
12
1
500
2
400
3
300
4
5
200
6
100
7
0
2
4
6
8
10
12
1
25
2
20
3
15
4
10
5
Slide 13 of 18
6
5
7
0
2
4
6
8
10
12
arXiv:1212.6003
1
8000
2
Fluorescence
image
6000
3
4
4000
5
2000
6
7
0
2
4
6
8
10
12
1
2nd order
antibunching
500
2
400
3
300
4
5
200
6
100
7
0
2
4
6
8
10
12
1
25
2
20
3
15
4
10
5
Slide 14 of 18
6
5
7
0
2
4
6
8
10
12
arXiv:1212.6003
1
8000
2
Fluorescence
image
6000
3
4
4000
5
2000
6
7
0
2
4
6
8
10
12
1
2nd order
antibunching
500
2
400
3
300
4
5
200
6
100
7
0
2
4
6
8
10
order
antibunching
25
2
20
3
15
4
181 nm FWHM
(x1.50)
10
5
Slide 15 of 18
216 nm FWHM
(x1.26)
12
1
3rd
Resolution:
271 nm FWHM
6
5
7
0
2
4
6
8
10
12
arXiv:1212.6003
Optical sectioning
Defocused image of a quantum dot:
Fluorescence
imaging
400
300
200
2nd order
antibunching
imaging
400
300
200
15
10
5
15
10
5
1
1
0.8
0.8
0.6
Optical signal integrated
over the field of view:
0.4
0.6
0.4
0.2
0.2
0
Slide 16 of 18
-1
0
-0.5
0
-1
0.5
-0.5
1
0
0.5
Defocusing, μm
1
Summary
•Far-field super-resolution imaging demonstrated by using quantum
properties of light naturally present in fluorescence microscopy
•The experiment was performed with commercially available
equipment, at room temperature, with commonly used quantum dot
fluorophores
•With further development of detector technology, antibunching
imaging may become feasible as a practical imaging method
Slide 17 of 18
The team
Jonathan M. Levitt
Stella Itzhakov
Ron Tenne
Slide 18 of 18
Zvicka Deutsch
Dan Oron
A
D
8000
1
1
2
8000
2
6000
3
6000
3
4
4
4000
5
4000
5
2000
6
7
7
0
2
4
6
8
10
12
B
0
2
500
1
2000
6
4
6
8
10
12
E
1
2
400
2
3
300
3
500
400
4
300
4
200
5
100
6
0
7
2
4
6
8
10
5
200
6
100
7
0
12
2
4
6
8
10
12
F
C 1
25
2
1
25
2
20
3
20
3
15
4
10
5
15
4
10
5
6
5
6
5
7
0
7
0
2
Slide 19 of 18
4
6
8
10
12
2
4
6
8
10
12
Superresolved images
Reconstructed high resolution images
Regular (photon
counting) image
Slide 20 of 18
Second order correlations
Third order correlations
Superresolved images
Slide 21 of 18
arXiv:1212.6003
Superresolved images
Slide 22 of 18
Superresolved images
Slide 23 of 18
A
4
6
8
277
267
262
286
284
269
258
244
258 272
280
273 274
276
274
271
288
268
286284
262
253
256 249271295
259
261
262
266
12
276
10
B
304
15
4
266
224203
206
207
219
213
213
6
215
216
217
6
2
212 213
227
0
200
205
212
210
210
4
6
180
4
186
5
180
162
191
181
183
194
171
175
4
210
10
175
181
157
166
175
0
150
175
188
185
185
2
181
5
178
188
189
180
189
7
Slide 24 of 18
200
180
180
186
168
189
181
F
15
185
183 171
171
186
6
230
183
186
171
196
225
0.18143
181
196
178
191
189 205
188
186
178 176
185168
188
175
189 171
178 186
183
194
186
178
220
12
181
171
185
178
215
166
181
181
173
188
181
185
10
210
PSF width (nm)
223
8
191
185
3
310
E
217
2
300
216
220
7
186
290
215
217
1
280
8
217
221
C
270
4
220
2
260
0.21557
212
217 217
217
250
25
215
5
2
0
240
224 215
223
219
4
6
PSF width (nm)
20
206
215 217
219216
221
8
209
215
215
10
271
219
212
3
0.27182
268
269
260
263
215
2
12
270
262
268
1
213
262
267
270
267
282
278
291
263
14
259
266
253
274
287
273
266
299
274
276 283
251
5
277
286
282 282
271
279
253
268
277
264
255
271
279
283
D
273
272
273
283
260
253
10
270
283
268
259
256
279
292 286
266
280 273 262
277
289
267
283
258
2
267283
292281
282
6
8
10
12
160
170
180
190
PSF width (nm)
Quantum super-resolution
Conceptual difficulty: an absorptive grating with subwavelength period acts as an attenuator for every photon
• Transmitted light contains no information on the grating phase or period
• Any linear absorber mask is a superposition of gratings
• High spatial frequency components of the mask are lost
Slide 25 of 18