Transcript Transistors
ME 4447/6405
Student Lecture
Justin Chow
Jacob Huang
Daniel Soledad
Overview
History
Properties
Types
BJT
JFET
MOSFET
Applications
Daniel Soledad
Introduction
Transistor History
“Transistor” is combination of “transconductance”
and “variable resistor”
How Transistors Are Made
▪ Vacuum tubes
▪ Inefficient, fragile, bulky, generated a lot of heat
▪ First Transistors
▪ Semiconductors – Bell Labs 1947
Introduction
Packaging
Surface Mount or Through Hole
Usually 3 or 4 terminal device
▪ Can be packaged into ICs
General Applications
Amplification/Regulation
Switches
Current Controlled
i.e: BJT
The output current is proportional to input current
Voltage Controlled
i.e.: JFET, MOSFET
The output current is proportional to input
voltage
BJT Transistor
Bipolar Junction Transistor
3 semiconductor layers sandwiched together
Comes in two flavors
NPN BJT
PNP BJT
Justin Chow
BJT Transistor
Diodes
Forward Biased
Reverse Biased
current flows
when VPN > .6-.7V
no current flows
BJT Transistor
BJT Basics (NPN)
BE Forward Biased
BC Reversed Biased
β=IB / Ic ≈ 100
IE = IB + IC
Electron Flow
emitter
base
collector
BJT Transistor
Things to remember
PNP, biasing opposite
Conventional current vs electron flow
A small input current controls a much larger
output current.
BJT Transistor
Operating Regions
Operating Region
Parameters
Cut Off
VBE <0.7 V
IB = IC = 0
Linear
VBE >0.7 V
IC = β*IB
Saturated
IB > 0, IC > 0
VBE >0.7 V,
VCE 0.2 V
BJT Transistor
Operating Regions
From
3rd Exercise
Turns on/off
coils digitally
BJT Transistor
Common Emitter Amplifier
β=100
BJT Transistor
Common Emitter Amplifier
IB = (Vin − VB) / 10000Ω = (Vin − 0.7) / 10000Ω
IC = β(Vin − 0.7) / 10000Ω
Vout=10000*(Vin-0.7)/1000
When VCE = 0.2V
IC = 9.8 / 1000Ω = 9.8mA
IB = IC / β = 0.098mA
Vin − 0.7 = (0.098mA)(10000Ω)
Vin = 1.68V or greater.
BJT Transistor
Power Dissipation
PBJT = VCE * iCE
Should be below the rated transistor power
Important for heat dissipation as well
Increased Gain
β = β1 * β2
VBE = VBE1 + VBE2
Slower Switching
2N6282
Analogous to BJT
Transistors
Output is controlled
by input voltage
rather than by current
4 Pins vs. 3
BJT
FET
Collector
Drain
Base
Gate
Emitter
Source
N/A
Body
FET (Field Effect Transistors)
MOSFET (Metal-Oxide-Semiconductor Field-Effect
Transistor)
JFET (Junction Field-Effect Transistor)
MESFET
HEMT
MODFET
Most common are the n-channel MOSFET or JFET
Jacob Huang
MOSFET
In practice the body and
source leads are almost
always connected
Most packages have these
leads already connected
D
D
B
G
G
S
B
S
JFET
D
G
S
Metal-Oxide Semiconductor F.E.T.
A.K.A. Insulated-Gate FET (IGFET)
2 Modes: Enhancement/Depletion
N-Channel
+ Vgs -> More electrons -> More Current
- Vgs -> Less electrons -> Less current
P-Channel – Reversed
Different from BJT
Current
flow
D
G
B
S
N-Channel
VGS > Vth -> Turns on device
VGS < VTH -> No Current
P-Channel
Reversed
Only E-type used now
Region
Criteria
Effect on Current
Cut-off
VGS < Vth
IDS=0
Linear
Saturation
VGS > Vth
Transistor acts like a
variable resistor,
And
VDS <VGS-Vth controlled by Vgs
VGS > Vth
Essentially constant
current
And
VDS >VGS-Vth
Current
flow
D
G
B
S
Current
flow
D
G
B
S
Used in high-power applications
Heat Sink
Vertical layout
Not Planar like other transistors
Reverse Bias VGS => Reduces channel size =>
Reduced Current
Defaults “on”
Vgs = 0
“on”
|Vgs|> |Vp| “off”
Vp = Pinch-off or Cut-off Voltage
Internal Capacitance
Bi-directional
Cut-off voltage is varying for each JFET
0.3V – 10V
N-Channel – Negative VGS
P-Channel – Positive VGS
Do not Forward Bias JFET – burn out
Property BJT
MOSFET JFET
Gm
Best
Worst
Medium
Speed
High
Medium
Low
Noise
Moderate
Worst
Best
Good
No
Switch
High-Z Gate No
Yes
Yes
Yes
Yes
ESD
Sensitivity
More
Less
Less
Complementary MOS
Used in Logic Gates
P-channel (PMOS) to high
N-channel (NMOS) to low
HIGH usually +5 V
LOW usually ground
Q is high when A = 0, Q is low when A = 1
References
Spring 2007/2008 Slides
http://www.made-in-china.com/image/2f0j00ZhaTKREnIQkfM/IC-Transistor.jpg
http://en.wikipedia.org/wiki/JFET
http://en.wikipedia.org/wiki/MOSFET
http://en.wikipedia.org/wiki/Bipolar_junction_transistor
http://www.allaboutcircuits.com/vol_3/chpt_2/8.html
http://www.mcmanis.com/chuck/robotics/tutorial/h-bridge/images/basicbjt.gif&imgrefurl=http://www.mcmanis.com/chuck/robotics/tutorial/hbridge/bjt_theory.html
http://www.allaboutcircuits.com/vol_3/chpt_2/6.html
http://web.engr.oregonstate.edu/~traylor/ece112/lectures/bjt_reg_of_op.pdf
http://hades.mech.northwestern.edu/wiki/index.php/Diodes_and_Transistors#Com
mon_Emitter_Amplifier_Circuit
http://en.wikipedia.org/wiki/Darlington_transistor
http://www.allaboutcircuits.com/vol_3/chpt_6/2.html
http://www.allaboutcircuits.com/vol_3/chpt_4/2.html
http://www.designers-guide.org/Forum/YaBB.pl?num=1162476437/4
http://en.wikipedia.org/wiki/CMOS