Transcript Clustering
Clustering
Quan Zou
P.H.D. Assistant Professor
http://datamining.xmu.edu.cn/~zq/
Outline
Introduction of Clustering
K-means Clustering
Hierarchical Clustering
What is Clustering
Cluster: A collection of data objects
similar (or related) to one another within the same group
dissimilar (or unrelated) to the objects in other groups
Cluster analysis (or clustering, data segmentation, …)
Finding similarities between data according to the characteristics
found in the data and grouping similar data objects into clusters
Unsupervised learning: no predefined classes (i.e., learning by
observations vs. learning by examples: supervised)
3
Clustering for Data Understanding
and Applications
Biology: taxonomy of living things: kingdom, phylum, class, order,
family, genus and species
Information retrieval: document clustering
Marketing: Help marketers discover distinct groups in their customer
bases, and then use this knowledge to develop targeted marketing
programs
Typical applications
As a stand-alone tool to get insight into data distribution
As a preprocessing step for other algorithms
5
Clustering as a Preprocessing Tool
(Utility)
Summarization:
Preprocessing for regression, PCA, classification, and association
analysis
Compression:
Image processing: vector quantization
Finding K-nearest Neighbors
Localizing search to one or a small number of clusters
Outlier detection
Outliers are often viewed as those “far away” from any cluster
6
聚类分析的几种方法
划分方法
将数据对象分为几组
每组至少包含一个对象
每个对象属于一组(扩展)
层次方法
凝聚:自底向上
分裂:自顶向下
基于网格的方法
对象空间作为一个网格结构
向量化
聚类分析的一般准备
属性
颜色
长宽比
1
255106106
1.2
1
2
25511486
1.0
2
3
255239219
0.5
3
相异度矩阵
1
2
3
0
0
0
The K-Means Clustering Method
Given k, the k-means algorithm is implemented in four steps:
Partition objects into k nonempty subsets
Compute seed points as the centroids of the clusters of the
current partitioning (the centroid is the center, i.e., mean
point, of the cluster)
Assign each object to the cluster with the nearest seed point
Go back to Step 2, stop when the assignment does not change
9
An Example of K-Means
Clustering
K=2
Arbitrarily
partition
objects into
k groups
The initial data set
Update the
cluster
centroids
Loop if
needed
Reassign objects
Do loop
Until no
change
Update the
cluster
centroids
10
Example
Problem
Suppose we have 4 types of medicines and each has two attributes (pH
and weight index). Our goal is to group these objects into K=2 group of
medicine.
Medicin
D
Weight
e
pH-
C
Index
A
1
1
B
2
1
C
4
3
D
5
4
A
B
11
Example
Step 1: Use initial seed points for
partitioning
c1 A , c 2 B
Euclidean distance
d( D , c1 ) ( 5 1)2 ( 4 1)2 5
d( D , c2 ) ( 5 2)2 ( 4 1)2 4.24
Assign each object to the cluster
with the nearest seed point
12
Example
Step 2: Compute new centroids of the
current partition
Knowing the members of each
cluster, now we compute the new
centroid of each group based on
these new memberships.
c1 (1, 1)
2 4 5 1 3 4
c2
,
3
3
(11/ 3 , 8 / 3)
( 3.67, 2.67)
13
Example
Step 2: Renew membership based on new
centroids
Compute the distance of all
objects to the new centroids
Assign the membership to objects
14
Example
Step 3: Repeat the first two steps until its
convergence
Knowing the members of each
cluster, now we compute the new
centroid of each group based on
these new memberships.
1
1 2 11
c1
,
(1 , 1)
2
2
2
1
1
45 34
c2
,
(4 , 3 )
2
2
2
2
15
Example
Step 3: Repeat the first two steps until its
convergence
Compute the distance of all
objects to the new centroids
Stop due to no new assignment
16
K-means Demo
1. User set up the number of
clusters they’d like. (e.g. k=5)
17
K-means Demo
1. User set up the number of
clusters they’d like. (e.g. K=5)
2. Randomly guess K cluster
Center locations
18
K-means Demo
1. User set up the number of
clusters they’d like. (e.g. K=5)
2. Randomly guess K cluster
Center locations
3. Each data point finds out
which Center it’s closest to.
(Thus each Center “owns” a
set of data points)
19
K-means Demo
1. User set up the number of
clusters they’d like. (e.g. K=5)
2. Randomly guess K cluster
centre locations
3. Each data point finds out
which centre it’s closest to.
(Thus each Center “owns” a
set of data points)
4. Each centre finds the centroid
of the points it owns
20
K-means Demo
1. User set up the number of
clusters they’d like. (e.g. K=5)
2. Randomly guess K cluster
centre locations
3. Each data point finds out
which centre it’s closest to.
(Thus each centre “owns” a
set of data points)
4. Each centre finds the centroid
of the points it owns
5. …and jumps there
21
K-means Demo
1. User set up the number of
clusters they’d like. (e.g. K=5)
2. Randomly guess K cluster
centre locations
3. Each data point finds out
which centre it’s closest to.
(Thus each centre “owns” a
set of data points)
4. Each centre finds the centroid
of the points it owns
5. …and jumps there
6. …Repeat until terminated!
22
K-mean Algorithm
23
Variations of the K-Means Method
• Most of the variants of the k-means which differ in
– Selection of the initial k means
– Dissimilarity calculations
– Strategies to calculate cluster means
• Handling categorical data: k-modes
– Replacing means of clusters with modes
– Using new dissimilarity measures to deal with categorical objects
– Using a frequency-based method to update modes of clusters
24
讨论
准则带来问题
局部最优
(选择恰当的初始点)
离群点
(每次循环的时候删除离群点)
K值的选取
(Xmeans)
球状簇
(层次聚类)
局部最优
较好的初始点
不好的初始点
讨论
准则带来问题
局部最优
(选择恰当的初始点)
离群点
(每次循环的时候删除离群点)
K值的选取
(Xmeans)
球状簇
(层次聚类)
讨论
准则带来问题
局部最优
(选择恰当的初始点)
离群点
(每次循环的时候删除离群点)
K值的选取
(Xmeans,平均直径或半径)
球状簇
(层次聚类)
讨论
准则带来问题
局部最优
(选择恰当的初始点)
离群点
(每次循环的时候删除离群点)
K值的选取
(Xmeans)
球状簇
(层次聚类)
球状簇
Hierarchical Clustering
Use distance matrix as clustering criteria. This method does not
require the number of clusters k as an input, but needs a termination
condition
Termination condition: Number of clusters
Step 0
a
Step 1
Step 2 Step 3 Step 4
ab
b
abcde
c
cde
d
de
e
Step 4
agglomerative
(AGNES)
Step 3
Step 2 Step 1 Step 0
divisive
(DIANA)
32
层次聚类方法概述
层次聚类方法对给定的数据集进行层次的分解,直到某种条
件满足为止。具体又可分为:
凝聚的层次聚类:一种自底向上的策略,首先将每个对象作为一个簇
,然后合并这些原子簇为越来越大的簇,直到某个终结条件被满足。
分裂的层次聚类:采用自顶向下的策略,它首先将所有对象置于一个
簇中,然后逐渐细分为越来越小的簇,直到达到了某个终结条件。
层次凝聚的代表是AGNES算法。层次分裂的代表是DIANA
算法。
AGNES算法
AGNES(Agglomerative NESting)算法最初将每个对象作为一
个簇,然后这些簇根据某些准则被一步步地合并。两个簇间的
相似度由这两个不同簇中距离最近的数据点对的相似度来确定
。聚类的合并过程反复进行直到所有的对象最终满足簇数目。
自底向上凝聚算法(AGNES):
输入:包含n个对象的数据库,终止条件簇的数目k。
输出:k个簇,达到终止条件规定簇数目。
(1)将每个对象当成一个初始簇;
(2)REPEAT
(3)根据两个簇中最近的数据点找到最近的两个簇;
(4)合并两个簇,生成新的簇的集合;
(5)UNTIL达到定义的簇的数目;
AGNES算法例题
序号
属性1
属性2
第1步:根据初始簇计算每个簇之间的距离,随机找出距离最小的两
个簇,进行合并,最小距离为1,合并后1,2两个点合并为一个簇。
1
1
1
2
1
2
3
2
1
第2步:对上一次合并后的簇计算簇间距离,找出距离最近的两个簇
进行合并,合并后3,4点成为一簇。
4
2
2
第3步:重复第2步的工作,5,6点成为一簇。
5
3
4
第4步:重复第2步的工作,7,8点成为一簇。
6
3
5
第5步:合并{1,2},{3,4}成为一个包含四个点的簇。
7
4
4
第6步:合并{5,6},{7,8},由于合并后的簇的数目已经达到了用户输
入的终止条件,程序终止。
8
4
5
步骤 最近的簇距离
最近的两个簇
合并后的新簇
1
1
{1},{2}
{1,2},{3},{4},{5},{6},{7},{8}
2
1
{3},{4}
{1,2},{3,4},{5},{6},{7},{8}
3
1
{5},{6}
{1,2},{3,4},{5,6},{7},{8}
4
1
{7},{8}
{1,2},{3,4},{5,6},{7,8}
5
1
{1,2},{3,4}
{1,2,3,4},{5,6},{7,8}
6
1
{5,6},{7,8}
{1,2,3,4},{5,6,7,8}结束
AGNES性能分析
AGNES算法比较简单,但经常会遇到合并点选择的困难。假如一旦一组
对象被合并,下一步的处理将在新生成的簇上进行。已做处理不能撤销
,聚类之间也不能交换对象。如果在某一步没有很好的选择合并的决定
,可能会导致低质量的聚类结果。
假定在开始的时候有n个簇,在结束的时候有1个簇,因此在主循环中有
n此迭代,在第i次迭代中,我们必须在n-i+1个簇中找到最靠近的两个聚
类。另外算法必须计算所有对象两两之间的距离,因此这个算法的复杂
度为O(n²),该算法对于n很大的情况是不适用的。
DIANA算法
DIANA(DIvisive ANAlysis)算法是典型的分裂聚类方法。
在聚类中,用户能定义希望得到的簇数目作为一个结束条件。
同时,它使用下面测度方法:
簇的直径:在一个簇中的任意两个数据点的距离中的最大值。
算法 DIANA(自顶向下分裂算法)
输入:包含n个对象的数据库,终止条件簇的数目k。
输出:k个簇,达到终止条件规定簇数目。
(1)将所有对象整个当成一个初始簇;
(2) FOR (i=1; i≠k; i++) DO BEGIN
(3)
在所有簇中挑出具有最大直径的簇C;
(4)
找出C中与其它点平均相异度最大的一个点p并把p放入splinter
group,剩余的放在old party中;
(5). REPEAT
(6)
在old party里找出到最近的splinter group中的点的距离不
大于到old party中最近点的距离的点,并将该点加入splinter
group。
(7)
UNTIL 没有新的old party的点被分配给splinter group;
(8) splinter group和old party为被选中的簇分裂成的两个簇,与其它
簇一起组成新的簇集合。
(9) END.
DIANA算法例题
序号
属性 1
属性 2
1
1
1
2
1
2
3
2
1
4
2
2
5
3
4
6
3
5
7
4
4
8
4
5
步骤
1
2
3
4
5
第1步,找到具有最大直径的簇,对簇中的每个点计算平均相异度(假定采用
是欧式距离)。
1的平均距离:(1+1+1.414+3.6+4.24+4.47+5)/7=2.96
类似地,2的平均距离为2.526;3的平均距离为2.68;4的平均距离为2.18;
5的平均距离为2.18;6的平均距离为2.68;7的平均距离为2.526;8的
平均距离为2.96。
挑出平均相异度最大的点1放到splinter group中,剩余点在old party中。
第2步,在old party里找出到最近的splinter group中的点的距离不大于到old
party中最近的点的距离的点,将该点放入splinter group中,该点是2。
第3步,重复第2步的工作,splinter group中放入点3。
第4步,重复第2步的工作,splinter group中放入点4。
第5步,没有在old party中的点放入了splinter group中且达到终止条件
(k=2),程序终止。如果没有到终止条件,因该从分裂好的簇中选一
个直径最大的簇继续分裂。
具有最大直径的簇
splinter group
{1,2,3,4,5,6,7,8} {1}
{1,2,3,4,5,6,7,8} {1,2}
{1,2,3,4,5,6,7,8} {1,2,3}
{1,2,3,4,5,6,7,8} {1,2,3,4}
{1,2,3,4,5,6,7,8} {1,2,3,4}
Old party
{2,3,4,5,6,7,8}
{3,4,5,6,7,8}
{4,5,6,7,8}
{5,6,7,8}
{5,6,7,8} 终止
关于层次聚类的讨论
高维灾难
维度非常高时,各个点之间的距离都近似
维度非常高时,各个向量几乎都正交
什么时候会高维?
• 文本、图像、基因表达数据
关于层次聚类的讨论
停止准则
簇的个数事先已知
自底向上
• 新合并的簇出现不合理的情况
– 要求簇内所有点到质心的距离都大于阈值
生成进化树,找出大于阈值的边
启发式课题
在本章介绍的聚类算法中,频繁用到了“
质心”的概念,对于欧式空间中的向量,
我们很容易计算质心。但对于非欧式空间
的样本,比如string、text,我们如何计算
一个cluster的质心?
Email: [email protected]
作业
请描述K-means算法的原理,并分析其主要缺
点。
层次聚类的基本策略有哪两种?分别写出其算
法
有监督学习和无监督学习的区别?