Butadiene_Extraction_IIP_Presentation1.FINAL

Download Report

Transcript Butadiene_Extraction_IIP_Presentation1.FINAL

Reliance Industries Limited
BUTADIENE EXTRACTION
Sanjay Rinke
Dr.G.Padmavati,Vimal Shah,Nitin Pal
1
Agenda
•BASF NMP Process – VMD
•JSR Acetonitrile Process – HMD
•Simulation of HMD Process - RTG
2
BASF NMP PROCESS
RELIANCE INDUSTRIES LIMITED
VADODARA MANUFACTURING UNIT
3
RIL VMD BD UNIT-OVERVIEW
PAST
PRODUCT
PRESENT
1,3-BUTADIENE
CAPACITY
20,000 MTA
50,000 MTA
LICENSOR
UOP; USA
BASF; GERMANY
BASIC ENGINEERING
UOP; USA
ABB LUMMUS; USA
EIL;NEW DELHI
IDEA; CHENNAI
1979
1996
DETAILED ENGINEERING
YEAR OF COMMISSIONING
4
ADVANTAGES OF BASF NMP PROCESS
• BASF Process commercialized since 1968
• Total BASF capacity more than 2000 KMT
• High Yields
• Higher Butadiene Purity
• Ability to process wide variety of feed
5
ADVANTAGES OF BASF NMP PROCESS
contd.
• Non corrosive, Non Toxic solvent
• Safe plant operation–No acetylene
accumulation
• Low Energy Consumption
• High turndown ratio
6
FLOW DIAGRAM
BUTADIENE FLOW DIAGRAM
Acetylene
washer
After Washer
RUP
Main Washer
RLP
C - 24
13-503
V A to
Flare
Degasser
C -22
13-502
13-504
13-505
C4R
MX-C4
Feed
Propyne
Column
C- 41
P 33
Degasser feed
flash drum
C- 45
V-22
K.O. Drum
CC-31
Compressor
V-31
1:3
BD
CIS
Final Column
7
BASF NMP PROCESS PERFORMS SEPARATION

Extractive Distillation
Butenes, Butanes & C4 Acetylenes have B.P.
close to 1,3 Butadiene. Separation is not possible
by conventional distillation. However solubility of
these components in NMP is very different from
1,3 Butadiene. Therefore separation by extraction
distillation.

Conventional Distillation
1,2 Butadiene, Propyne & some C5 HC have high
boiling point compared to 1,3 BD. Therefore
separation by conventional distillation.
8
SEPARATION STEPS

Extractive distillation-1
(Separation of C4 Raffinate)

Extractive distillation-2
(Purification of Crude butadiene for
separation of Ethyl Acetylene/ Vinyl
Acetylene)

Degassing
(Solvent Recovery & Removal of VA Stream)

Product Purification
(For removal of traces of lighter & Heavier
impurities)
9
PRODUCT QUALITY
Sr. No.
1
Product
1:3 Butadiene
Purity
99.7%
Butadiene Dimers
200 wt ppm
(Maximum)
3
Total Acetylenes
200 wt ppm
(Maximum)
4
Other C4s (Cis-2Butenes)
10
2
10
RELIABILITY ISSUES

Popcorn formation & fouling in final
column overhead condensers

Fouling in degasser column

Final Column PSV line rupture

Prime reason is oxygen initiated
polymerization

Higher losses of solvent in acetylene
washer wash water stream
11
MEASURES IMPLEMENTED

Nitriting of system with hot nitrite circulation and monitoring
of NO3 conversions.

Oxygen level measurement from the vents of the receiver twice
a week

Continuous venting from the condenser dome cover end.

Installation of one spare condenser and changing over at
regular frequency of 80-90 days in Final Column

Installation of in line oxygen measurement from the vents
(commissioned by Nov 07)

TBC dosing across the shell (at 5 locations) and in the vapor
line to the condenser for oxygen scavenging.
12
JSR ACETONITRILE PROCESS
RELIANCE INDUSTRIES LIMITED
HAZIRA MANUFACTURING DIVISION
13
RIL HMD BD UNIT-OVERVIEW
PRODUCT
: 1,3-BUTADIENE (99.5% pure)
CAPACITY
: 140 KTA
LICENSOR
: JSR, Japan
BASIC ENGINEERING
: JSR, Japan
DETAILED ENGINEERING
: Toyo Engineering India
YEAR OF COMMISSIONING
: 2005
PLANT INSTALLATION TIME : 16 MONTHS
Winner of International Project Management Award
14
Design Considerations

Designed to process the Mix C4 from In house
Cracker Plant & Imported Mix-C4

Case 1
(54%)
: High severity operation - 1,3BD

: Low severity operation - 1,3BD
Case 2
(44%)

BD recovery
: Case1- 98% / Case2- 98.9%

Solvent used
: Acetonitrile

Selectivity
:VA>EA>1,2BD>MA>C5+>
1,3BD>cis-Butene>n- Butene> t- Butene>C3
15
Critical to Safety Operation
•
Build up of MA > 50 wt% explosive
decomposition, alarm, TALO trip to
purge the stream to flare
•
Build up EA + VA > 45 wt% explosive
decomposition, alarm, low diluents
flow trip
•
Build up of 1,2 BD > 50 wt%
decomposition
takes
place.Temp
cascade control with bottoms with
drawl and hard wired alarm provided.
16
Process Flow Diagram
Butanes + Butenes
Solvent
C4 Feed
EDC No.1U
Wate
r
BB Washer
Topping
Column
BD
Washer
Solvent + water
Butadiene
Product
Wate
r
EDC No.1L
Solvent
Solvent
Stripper
Lean
Solvent
Water +
HCs
1,2BD + C5+ & 1,3BD
(traces)
C4s Acetylenes + B &
B
EDC No.2
Side Cut
Column
Tailing
Column
Water
Washer
Column
B&B
Diluent
s
Water +
Solvent
17
C4 Hydrocarbon Balance
C4
FEED
EDC1
TOP
SCC
TOP
TAIL
BTM
TOPP
TOP
TOPP
BTM
BBW
TOP
SRC
TOP
Butane+
Butene
___
___
___
___
___
100%
___
TransButene
___
___
___
___
___
100%
___
CISButene
___
___
___
___
0.2%
99.8%
___
1-3BD
SMALL
SMALL
SMALL
SMALL
___
___
1-2BD
___
10%
90%
MA
___
___
EA+VA
___
C5+
DIMER
98%
___
___
___
___
___
100%
___
___
___
100%
___
___
___
___
___
___
___
100%
___
___
___
___
___
___
___
___
___
100%
18___
NO:1 EDC COLUMN (UPPER)
( Raffinate)
Diluents
Liquid reflux
ANALYZER
510001
FOR
1-3 BD,
EA,
VA,
&
MA
E – 5103
ANALYE
R – 51002
FOR
1-3 BD &
OTHERS
95
V – 5101
Butane & Butene
Raffinate to
OSBL
SRC
Solvent
84
SRC
1,3 BD & Heavies
30
C-5111
19
C4 feed
vapor
40Deg C
12.4 MT/hr
Vapor from no.1 EDC lower
1
Solvent bleed
4.4Kg/cm2
BB Washer
C - 5101
19
TO No.1 EDC COLUMN (LOWER)
TO SRC
Vapor to No.1 EDC Upper
Liquid from C-5101
90
ANALYZER – 51005
FOR
MA & 1-2 BD
1-3BD & Butane
Butene
Vapor to C-5103
( EA,VA,MA,1-3 BD )
7
Liquid from C-5103
( EA,VA & Solvent )
6
5
Solvent & EA,VA
Vapor from C-5104
C – 5102
To Solvent stripper
20
NO:2 EDC COLUMN
Vapor to C-5107
( 1-3 BD , MA & Heavies)
110
Reflux
(1-3 BD & Heavies)
Solvent
90
1-3BD,MA & Heavies
ANALYZER –
51004
FOR
MA,VA & EA
Solvent & EA-VA
Vapor from C-5102
(1-3 BD, EA-VA,MA & Heavies )
C – 5103
21
To C - 5102
Vapor to C-5102
( 1-3 BD , MA & Heavies)
SOLVENT STRIPPER
From C-5102
(Solvent,EA,VA,1-3BD & 1-2 BD )
55
From C-5105
(Solvent &1-3BD)
Vapor to C-5105
( Solvent,EA,VA,1-3BD & 1-2 BD )
26
1-3 BD , MA & Heavies
Solvent
C – 5104
22
To solvent loop
DILUENT FROM V – 5101
Vapor (Solvent,EA-VA &1-3BD)
E – 5110
15
E – 5111
E – 5112
C4 Acetylene
TO C4 Hydro. Unit
Reflux
(Solvent & 1-3BD)
Brine
25
V – 5102
Solvent & 1-3 BD
1
Water
ANALYZER – 51003
FOR
EA & VA
Vapor-Liquid from C-5104
(1-3 BD, EA-VA & Solvent )
SIDE CUT COLUMN
SIDE CUT WASHER
1
TO C-5104
(1-3 BD & Solvent)
C – 5105
C – 5106
23
TO SRC
ACN 62.52%, H2O 28.84%,ETOH 8.64%
94 Deg C
E – 5122
LP-FLARE
OWS
BB-W
TO E - 5112
SCC-W
CWS
PH
Analyze
r
V – 5110
E – 5126
25
21
V – 5106
V – 5107
E – 5121
BB-W
V-5105
TO C-5104
BOTTOM
2.84 MT/hr
E – 5123
114 Deg C
E – 5124
V-5104
V-5101
01
SOL.
From SCC-W
LP-Steam
CAUSTIC
V-5117
V-5109
C – 5110
24
TO V – 5118
CWR
WATER CIRCULATION LOOP
LP - FLARE
8 MT/hr
30
E – 5126
4 MT/hr
CWS
25
TO E – 5112
25
13 MT/hr
V - 5110
SCN
19
BB-W
C - 5109
SSC-W
C - 5106
BD-W
C - 5111
25
V - 5106
E - 5121
A/B
FROM
V-5101
1
1
21
FROM
E-5112
1
FROM
V-5104
SRC
C - 5110
V-5101 Boot
V-5104 Boot
1
V-5105 Boot
25 MT/hr
25
SOLVENT LOOP
C - 5104
SDN
C – 5102 Tray 3
88.6 Deg C
E - 5108
C – 5102 Tray 1
E – 5105
E – 5106
110 Deg C
97.3 Deg C
E – 5107
A/B
C – 5110 Boot
TBC
E – 5123
126 Deg C
138 Deg C
C – 5102 Tray 4
E – 5102
A/B
C 4 Feed
E – 5101
A/B
C – 5102 Tray 2
C – 5102 Bottom
C – 5108 Boot
C – 5107 Boot
E – 5115
78 Deg C
C – 5107 Boot
C – 5110 Boot
E – 5117
73 Deg C
C – 5108 Boot
CWR
C – 5107 Tray 26
E – 5114
70 Deg C
C – 5107 Tray 25
E – 5127
FROM
C - 5110
50 Deg C
58.7Deg C
2 MT/hr
CWS
DENSITY
ANALYZER
TO C-5109
TO C - 5103
26
TO C - 5101
Process & Quality Control
• Butadiene Process Controls and Quality Control systems
are well established.
• Strong on-line and off-line Quality control system is followed
to ensure that customer gets the right material.
• Logistics systems are designed to ensure on-time and
reliable supplies. Proper tracking methodologies are set.
• Fully equipped QC & QA set-up available.
• All the parameters are checked for conformance to
specification and certification is done through COA. Labs
are accredited to ISO:17025:2005
• Well defined customer feedback/ complaint management
27
procedures exists for improving QA systems.
SIMULATION OF ACETONITRILE PROCESS
RELIANCE INDUSTRIES LIMITED
CEPD GROUP-RTG VMD
28
Simulation of BD Process
Butanes + Butenes
MA & other C4s
Solvent
C4 Feed
Water
EDC No.1U
BB Washer
BD Washer
Topping
Column
Tear1
Butadiene
Product
Tear4
Water
EDC No.1L
Tear2
Solvent
Tear3
Tailing
Column
Water + HCs
Solvent
1,2BD + C5+ & 1,3BD (traces)
EDC No.2
C4s Acetylenes + B & B
Solvent
Stripper
Water
Washer
Column
Side Cut
Column
Lean Solvent
B&B
Diluents
Water + Solvent
29
Thermodynamics

Selection of VLE model is crucial for BD ED
simulation

UNIFAC Activity coefficient model used for all
columns

UNIFAC-LBY Activity coefficient model used for
Topping column simulation

ASPEN Plus 10.2 version used for simulations

To use latest ASPEN plus v7.0 pure component
properties are to be updated by user

NRTL, WILSON, UNIQUAC Activity coefficients are not
supporting well
30
Comparison of Design and Simulation Temperatures
Top temp.,C
Bottom
temp.,C
Design
Pred.
Design
Pred.
ED1U (C-5101)
44
41
71
72
ED1L (C-5102)
71
72
96
103
ED2 (C-5103)
45
45
57
59
Solvent stripper (C-5104)
110
110
138
135.5
Tailing column (C-5107)
40
40
60
53
Topping column (C-5108)
42
42
52
52
Topping column (feed tray)
50.6
50.6
Solvent purification column (C5110)
92.4
92.5
113.7
114
31
RadFrac (rigorous distilaltion for two & three pahse fractionation) Aspen Plus
module used for simulation
EDC-1 Upper Column Simulation Results
C-5101
Design
Stream
ED1L/D
MA/PD
0
Pred.
Design
Pred.
ED1U/B
11/34
0
24/65
1-Butene
0
9270
0
9278
Iso-butene
0
2861
0
2860
Trans-2-Butene
19500
5204
20700
5234
Cis-2-Butene
2600
2810
3232
3016
1,3-Butadiene
27479
24376
43769
40693
1,2-Butadiene
100
24
269
155
Ethylacetylene
50
35
135
112
Vinylacetylene
150
146
202
659
C5 heavier
100
145
270
159
Acetonitrile
11016
4265
175862
169212
Ethanol
1541
505
17481
16483
Water
255
1019
31982
32881
U/B
L/D
Reflux ratio is
provided as
input for 32
simulation
EDC-1 Upper Column Simulation Results
C-51010
Design
Pred.
Design
Pred.
Stream
ED1U/D
V
MA/PD
0/1
0/0
0/10
0/0
Iso-butane
4.9
0.4
71.4
70.2
n-Butane
26.4
25.0
385
386.7
1-Butene
227.8
229
3329
3289
Iso-Butene
452.6
466.4
6614
6589
Trans-2-butene
73.5
62.2
1073
1075
Cis-2-butene
52.8
43.5
771
807
1,3-Butadiene
1.7
0
25
0
C5 heavier
0
1.86
0
84
Acetonitrile
0
2.9
0
70
Water
0
3.9
0
83
ED1U/DL
Solvent
C4
D/V
Feed
D/L
Columns converged
without any errors
33
EDC-1 Lower Column Simulation Results
C-5102
Design
Pred.
Design
Pred.
Stream
SC/V
MA/PD
0/88
10.9/57.3 0/55
12/77
1-Butene
0
7.6
0
0
Trans-2-butene 0
45
0
0
Cis-2-butene
438
360
660
12
1,3-Butadiene
42092
42525
50930
28871
1,2-Butadiene
395
24
1210
192
Ethyl acetylene 88
54
275
336
Vinyl acetylene 395
155
1430
972
C5 heavier
306
62
440
2.5
Acetonitrile
4310
4170
186289
195457
Ethanol
375
537
18141
19763
Water
615
1087
36409
38834
B/L
SC/V
B/L
1-3 BD flow in bottom
six trays is found to be
very sensitive to
temperature 2C
difference in
temperature results
in
34
major difference in BD
flow.
Solvent Stripper Simulation Results
C-5104
Design
Pred.
Design
Pred.
Stream
D/V
MA/PD
0/0
7/65
0/0
0/0
Cis-2-butene
542
12
0
0
1,3-Butadiene 52022
28894
0
0
1,2-Butadiene 488
55
0
122
Ethyl
acetylene
163
217
0
0
Vinyl
acetylene
596
430
0
19
C5 heavier
379
2.5
0
0
Acetonitrile
5023
13440
183596
181992
Ethanol
468
2129
17707
17603
Water
1164
3691
35345
35146
B/L
D/V
B/L
35
Solvent Stripper Simulation Results
C-5104
Design
Pred.
Design
Pred.
Stream
SC/V
1,3Butadien
e
269
1,2Butadien
e
13
Ethyl
acetylene
92
134
16
16
Vinyl
acetylene
615
624
103
103
Acetonitrile
14981
12925
14917
12900
Ethanol
2229
2456
2180
2425
Water
1966
3897
1966
3900
Return/L
38
61
61
To C-5106
56
0
41
SC/V
R/L
1,2-Buatdiene
stripping observed to
be difficult
36
EDC2 Column Simulation Results
C-5103
Design
Pred.
Design
Pred.
Stream
D/V
MA/PD
0/111
6/42
0/0
5/28
Trans-2butene
0
32
0
635
Cis-2-butene
444
1056
273
163
1,3-Butadiene 54409
56162
26107
26263
1,2-Butadiene 277
39.6
137
27
Ethyl
acetylene
0
0
109
54
Vinyl
acetylene
0
0
545
155
C5 heavier
277
68
109
41
Acetonitrile
0
0
21052
21211
Ethanol
1
0
2025
2188
Water
299
365
3915
4087
B/L
D/V
B/L
C5 heavier is
considered as npentane in
simulations
37
Tailing Column Simulation Results
C-5107
Design
Pred.
Design
Pred.
Stream
SC/L
MA/PD
0/78
1.5/12.6
0/30.5
5/29.5
0/0
0/0
1-Butene
0
3
0
1.7
0
0
Trans-2-butene
0
25
0
3.9
0
0
Cis-2-butene
312
889
32
25.5
210
2.55
1,3-Butadiene
38820
39898
15969
16075
45
141
1,2-Butadiene
195
28
0
0
118
188
Ethyl acetylene
0
0
0
0
0
10.8
C5 heavier
277
40.5
0
0
116
27.66
D/L
Design
Pred.
B/L
D/L
SC/L
38
B/L
Topping Column Simulation Results
C-5108
Design
Pred.
Boot
Water
Design
Pred.
Distillate
Design
Pred.
1,3 BD
MA
0
0
30.5
30.33
0
0.172
cis-2Butene
0
0
0
0
32
32
1,3-BD
0
0
45.8
45.6
15968
15922
Water
13
12.61 0
0.38
0
0
Total, kg/hr
13
12.61 76.3
76.3
16000
15954.6
D
Excellent matching between simulation & design
values
From BD washer top
Thermodynamics: UNIFAC-LBY
39
Solvent Recovery Column Simulation Results
C-5110
Design
Pred.
Design
Pred.
Acetonitrile
Ethanol
Distillate
1772
1772
245
245
Bottom
0
0
0
0
Water
815
817.8
25013
25012
Total, kg/hr
2832
2834.9
25013
25012
D
Simulation results and design results matched very well
Opportunity for reflux ratio optimization observed
B
40
Observations

ASPEN Plus RadFrac module is used for simulation of all the
columns

Used default value for efficiency

Considered four tear streams from EDCU, EDCL, EDC2 &
solvent stripper

EDC1U, tailing, topping & solvent recovery columns design
reflux is provided as input

In solvent recovery column opportunity for reflux ratio
optimization noticed

EDC1L Bottom 6 trays flow is found to be very sensitive to
change in temperatures. 2ºC difference in temperature
resulted in major difference in 1,3 BD flow
41
Conclusion

UNIFAC
Thermodynamic
activity
coefficient model seems to simulate
the process reasonably well

The simulations are to be done for the
actual plant conditions to conclude the
effectiveness of the UNIFAC model for
the system & optimization
42
GROWTH IS LIFE
43