z-space distortions

Download Report

Transcript z-space distortions

Disentangling dynamic and geometric distortions

Federico Marulli Dipartimento di Astronomia, Università di Bologna Marulli, Bianchi, Branchini, Guzzo, Moscardini and Angulo 2012, arXiv:1203.1002

Bianchi, Guzzo, Branchini, Majerotto, de la Torre, Marulli, Moscardini and Angulo 2012, arXiv:1203.1545

Bologna cosmology/clustering group

Carmelita Carbone : N-body with DE and neutrinos + forecasts Victor Vera (PhD): BAO with new statistics Fernanda Petracca (PhD): DE and neutrino constraints from ξ (r p , π ) Carlo Giocoli : HOD and HAM (Halo Abundance Matching) Roberto Gilli : AGN clustering Michele Moresco : P(k) Lauro Moscardini : clustering of galaxy clusters Andrea Cimatti : galaxy/AGN evolution Federico Marulli : RSD + Alcock-Paczynski test + clustering of galaxies/AGN

Redshift space distortions How to constract a 3D map Ra, Dec, Redshift  comoving coordinates Geometric distortions the real comoving distance is: 

c z

dz c

(

M z c

Dynamic distortions the observed galaxy redshift:

z obs = z c + v || c

   

v c

Observational distortions z c : cosmological redshift due to the Hubble flow v || : component of the galaxy peculiar velocity parallel to the line-of-sight

Dynamic and geometric distortions The two-point correlation function geometric distortions  ( 2 ) 2

n

   

galaxy

DM

 no distortions 1  2 geometric distortions dynamic + geometric distortions dynamic distortions dynamic + geometric distortions

Modelling the dynamical distortions The “dispersion” model  (

r

 ,

r

|| )

lin

linear model   0 (

s

)

P

0 (

s

)   2 (

s

)

P

2 (

s

)   4 (

s

)

P

4 (

s

)  0 (

s

)    1  2  3  2 (

s

)    4  3   2 5    (

r

)  4  2 7     (

r

)   (

r

)   4 (

s

)  8  2 35    (

r

)  5 2  (

r

)  7 2  (

r

 )   (

r

)  3

r

3 

r

0

dr

 (

r

)

r

2  (

r

)  5

r

5 

r

0

dr

 (

r

)

r

4  (

r

,

r

)  non-linear model    ( )  (

r

,

r v

/ (

z

) /

a z

))

f

(

v

exp   1 12 2    2 |

v

|  12

f

( )   1   exp  2 12 12 model parameters   12  (

k

,

z

) 

f

(

k

,

z

)

b

(

z

)   0 .

545

b

(

z

)

f

d

ln

D d

ln

a

Statistical errors on the growth rate

bias

δβ β

Cb 0.7

V

 0.5

exp

n

   

b n

2 0

n

Mpc

density

Bianchi et al. 2012

Effect of redshift errors on β and σ 12 Only dynamic distortions Dynamic distortions + δz Dynamic distortions + δz δz  small sistematic error on β δβ ~ 5% for all δz

Effect of geometric distortions Error on the bias Error on β Spurious scale dependence in b(r) Error on ξ(s)/ξ(r) GD  δβ is negligible

The Alcock-Paczynski test Steps of the method 1. Choose a cosmological model to convert redshifts into comoving coordinates 2. Measure ξ 3. Model only cosmology the dynamical distortions 4. Go back to 1. using a different test

…next future 10 N-body simulations with massive neutrinos (L=2 Gpc/h) (1e6 CPU hours at CINECA) for: 

all-sky mock galaxy catalogues via HOD and box-stacking

all-sky shear maps via box-stacking and ray-tracing

all-sky CMB weak-lensing maps

end-to-end simulations for BAO and RSD statistics

reference skies for future galaxy/shear/CMB-lensing probes

ISW/Rees-Sciama implementation/analysis PI Carmelita Carbone

Conclusions • systematic error on β of up to 10%, for small bias objects • small systematic errors for haloes with more than ~1e13 Msun • scaling formula for the relative error on β as a function of survey parameters • the impact of redshift errors on RSD is similar to that of small-scale velocity dispersion • large redshift errors (σ v >1000km/s) introduce a systematic error on β, that can be accounted for by modelling f(v) with a gaussian form • the impact of GD is negligible on the estimate of β • GD introduce a spurious scale dependence in the bias • AP test  joint constraints on β and Ω M

Mock halo catalogues

BASICC simulation by Raul Angulo

GADGET-2 code • ~ 1448^3 DM particles with mass 5.49e10 Msun/h • periodic box of 1340 Mpc/h on a side • Λ CDM “concordance” cosmological framework (Ω m =0.25, Ω b =0.045, Ω Λ =0.75, h=0.73, n=1, σ 8 =0.9) • DM haloes: FOF M>1e12 Msun/h • Z=1

Systematic errors on the growth rate

Errors on β on different mass ranges • Small masses [M<5e12 Msun/h]  systematic error on β ~ 10% • Intermediate masses [5e122e13 Msun/h]  large random errors

Statistical errors vs Volume

Effect of redshift errors on β and σ 12

Effect of geometric distortions 1D correlation function deprojected correlation

Effect of redshift errors on 1D ξ