A Model of CO2 Absorption in Aqueous K2CO3/PZ

Download Report

Transcript A Model of CO2 Absorption in Aqueous K2CO3/PZ

Jorge M. Plaza
The University of Texas at Austin
January 10-11, 2008
Outline
 Previous Work
 Intercooling effect
 Conclusions
 Future Work
Modeling
+
K /PZ
 Cullinane K+/PZ (2005)
 e-NRTL to predict VLE and speciation
 Equilibrium and interactions regressed in FORTRAN
 Experimental rate constants and diffusion coefficients
 Hilliard K+ /PZ(2005)
 Thermodynamics into ASPEN Plus ®
 Chen
 Pilot plant testing (2004 – 2006)

4 Campaigns 5m/2.5m, 6.4m/1.6m K+/PZ and 7m MEA
 Absorber Model developed for K+/PZ (2006)
System Modeling
 Freguia MEA (2002) - Ratefrac
 Aspen Plus® rate-based model based on Dang (2001)
 Equilibrium by Jou et al. (1995)
 Intercooling for MEA absorber
 Ziaii MEA (2006) - RateSepTM
 Developed rate-based model for MEA in Aspen Plus ® based
on Freguia (2002), Hikita (1977) and Aboudheir (2002)
 Plaza K +/PZ(2006 – 2007)
 Activity based kinetics for 4.5m/4.5m K+/PZ
 Intercooling with split feed
Approaches to Absorber modeling
Mass Transfer
Gj
Lj-1
Gj
Lj-1
Enh
Gj
R
Gj+1
Lj
Gj+1
R
Lj
Rate
Based
Rate-based
Approach
Rate-based
Approach
Rate
Based
Reaction equilibrium
Reaction equilibrium
Reaction Kinetics
Reaction
kinetics
Enhancement Factor
Enhancement factor
Gj
Lj-1
Gj
Lj-1
Gj+1
Lj
Gj+1
Lj
Equilibrium
Equilibrium Approach
Equilibrium
Equilibrium Approach
Reaction Equilibrium
Reaction
equilibrium
Reaction Kinetics
Reaction
kinetics
Lj-1
R
Lj
Gj+1
Rate
Based
Rate-based Approach
Reaction Kinetics
Reaction
kinetics
Film Reactions
Film Reactions
Reaction
Kenig et al. Reactive Absorption: Optimal Process Design Via Optimal Modeling. Chem. Eng. Sci. 2001, 56, 343-350.
Film Discretization
PG
Pi = H[CO2]i
Gas Film
Rxn Film
Liquid Film
P*i
[CO2]*i
Bulk Gas
Interface
P*B
[CO2]*B
Bulk Liquid
Absorber Reactions
 PZCOO-
PZ  CO2  b 
 PZCOO  bH 
 PZ(COO-)2


PZCOO  CO2  b 
 PZ COO


2
b= OH-, H2O, PZ, CO3-2, PZCOO HCO3-

CO2  b 
 HCO3  bH
b=PZ, PZCOO-, OH-

 bH

Effect of Intercooling for 4.5m K+/4.5m PZ
Lean
Variable
ldg & flow
Gas Out
90% removal
H=15 m D=9.8 m
CMR-MTL metal NO-2P
Q
5% V. Liquid Hold up
5.48 kmol/s
12.7% mol CO2
(500 MW Plant)
Gas in
Rich
Intercooling with 4.5m K+/ 4.5 m PZ
Capacity (Kg CO2 removed/Kg Solvent)
0.12
0.1
0.08
0.06
0.04
Capacity-no cool
0.02
Capacity-single cool-0.5 H
Capacity-single cool-opt
0
0.15
0.2
0.25
0.3
Lean ldg
0.35
0.4
0.45
Rich loading vs. lean loading. 4.5m K+/ 4.5 m PZ
0.52
0.51
Rich ldg
0.5
0.49
0.48
Rich ldg
Rich ldg-single cool-0.5
H
Rich ldg-single cool-opt
0.47
0.46
0.45
0.15
0.2
0.25
0.3
Lean ldg
0.35
0.4
0.45
T and CO2 rate profiles 4.5m/4.5 m K+/ PZ . Loading = 0.44
72
-0.12
68
-0.1
64
-0.08
T (oC)
60
CO2 rate
56
-0.06
52
-0.04
Liquid T
48
-0.02
44
40
0
0.0
Top
0.1
0.2
0.3
0.4
0.5
0.6
Z/ZTotal
0.7
0.8
0.9
1.0
Bottom
CO2 absorption rate (kmol/s)
No Intercooling
T and CO2 rate with intercooling 4.5m/4.5 m K+/ PZ.
Loading=0.44
Intercooling
-0.12
68
-0.1
64
T (oC)
-0.08
60
56
-0.06
CO2 rate
52
-0.04
48
-0.02
Liquid T
44
40
0
0.0
Top
0.1
0.2
0.3
0.4
0.5
0.6
Z/ZTotal
0.7
0.8
0.9
1.0
Bottom
CO2 absorption rate (kmol/s)
72
T and CO2 rate profiles. 4.5m/4.5 m K+/ PZ. Loading = 0.21
-0.12
No Intercooling
68
-0.1
T (oC)
64
-0.08
60
56
-0.06
Liquid T
52
-0.04
48
-0.02
CO2 rate
44
40
0
0.0
Top
0.1
0.2
0.3
0.4
0.5
Z/ZTotal
0.6
0.7
0.8
0.9
Bottom
CO2 absorption rate (kmol/s)
72
T and CO2 rate with intercooling. 4.5m/4.5 m K+/ PZ
Loading=0.21
Intercooling
-0.12
68
-0.1
Temperature (oC)
64
-0.08
60
56
-0.06
52
-0.04
48
Liquid T
CO2 rate
44
40
-0.02
0
0.0
Top
0.1
0.2
0.3
0.4
0.5
0.6
Z/ZTotal
0.7
0.8
0.9
1.0
Bottom
CO2 Absorption rate (kmol/s)
72
T and CO2 rate profiles. 4.5 m K+/ 4.5 m PZ. Loading=0.315
No Intercooling
-0.12
68
Liquid T
T (oC)
64
-0.08
60
56
52
-0.04
48
44
CO2 rate
40
0
0.0
Top
0.1
0.2
0.3
0.4
0.5
Z/ZTotal
0.6
0.7
0.8
0.9
1.0
Bottom
CO2 Absorption Rate (kmol/s)
72
T and CO2 rate with intercooling. 4.5m/4.5 m K+/ PZ
Loading=0.315
Intercooling
-0.12
68
-0.1
T (oC)
64
-0.08
60
56
-0.06
52
CO2 rate
-0.04
Liquid T
48
-0.02
44
40
0
0.0
Top
0.1
0.2
0.3
0.4
0.5
0.6
Z/ZTotal
0.7
0.8
0.9
1.0
Bottom
CO2 absorption Rate (kmol/s)
72
Effect of Intercooling for 11m MEA
Lean
0.40
Q
H=15 m D=10.6 m
Semi
Lean
0.46
CMR-MTL metal NO-2P
1% V. Liquid Hold up
Q
5.48 kmol/s
12.7% mol CO2
(500 MW Plant)
Gas Out
Variable
removal
Gas in
Rich
T and CO2 rate profiles for no intercooling. 11 m MEA.
Semilean Feed
56
-0.04
85% Removal
T (oC)
54
-0.03
52
50
-0.02
48
Liquid T
46
-0.01
44
CO2 rate
42
40
0
0.0
Top
0.1
0.2
0.3
0.4
0.5
0.6
Z/ZTotal
0.7
0.8
0.9
1.0
Bottom
CO2 Absorption rate (kmol/s)
58
T and CO2 rate profiles with intercooled semilean feed.
11 m MEA.
56
-0.04
Semilean Feed
92.3% Removal
T (oC)
54
-0.03
52
CO2 rate
50
-0.02
48
46
-0.01
44
Liquid T
42
40
0
0.0
Top
0.1
0.2
0.3
0.4
0.5
0.6
Z/ZTotal
0.7
0.8
0.9
1.0
Bottom
CO2 absorption rate (kmol/s)
58
T and CO2 rate profiles with intercooled semilean feed & intercooling.
11 m MEA.
56
-0.04
Semilean Feed
93.0% Removal
2nd
Intercooling
T (oC)
54
-0.03
52
50
-0.02
CO2 rate
48
46
-0.01
44
Liquid T
42
40
0
0.0
Top
0.1
0.2
0.3
0.4
0.5
0.6
Z/ZTotal
0.7
0.8
0.9
1.0
Bottom
CO2 Absorption rate (kmol/s)
58
CO2 removal results for MEA absorber with split feed
Intercooling
CO2 Removal (%)
None
85.0
Single
92.3
Double
93.0
Conclusions
 Optimum intercooling is related with T bulge position
 Tbulge = pinch then intercooling efficient
 Tbulge away from pinch then not much improvement
Conclusions
 For a simple absorber system intercooling allows increase in
solvent capacity as high as 45%.
 Intercooling improves performance for MEA split feed as
high as 10%
 Intercooling offers a benefit in energy consumption in the
stripper thanks higher rich solvent loading
 Intercooling is most effective for operations in the range of
0.27 to 0.40 loading for the lean feed.
Future Work
 Substitute new Hilliard (2007) thermodynamics
 Model Aboudheir laminar jet to extract kinetics with
RateSepTM
 Fix ASPEN to represent physical properties : ρ, D, H
 Regress MEA pilot plant data to validate model