Transcript Regression
Quantities & Measurement Multivariable measurements 2. Regression 2 3 E a T a T a T ... T , 0 1 2 3 Y F(X) Z f :X Measured quantities © Leslie Pendrill 060606 Sought quantities 1 Advanced Measurement Uncertainty Analysis Multivariable measurements 2. Regression Y F(X) y = A.x Least-squares fit: Variance-covariance: © Leslie Pendrill 060606 1 T x A A A y fit T V AA 2 T 1 2 Measurement instruments 2.1 The e.m.f. at a thermocouple junction is 645(10) µV at the steam point, 3375(3) µV at the zinc point and 9149(49) µV at the silver point. Given that the e.m.f.temperature relationship is of the form: E(T) = a1T + a2T2 + a3T3 (T in °C), cold-point at ice (Eice = 0(10) µV) find a1, a2 and a3. © Leslie Pendrill 060606 Bentley exercise 2.1 3 Advanced Measurement Uncertainty Analysis 2.1 Answer E(T) = a1T + a2T2 + a3T3 0.01 Emf (V) E uE 2 10 E uE . 7 Ebis 0.005 Ebis1 E Ebis 0 02 10 7 0 . 200 200 0 400 400 600 600 T T 0 T1 A T 2 T 3 T0 T12 T22 T32 2 T0 3 T 1 3 T 2 T33 3 a1 = 5.840 µV/ °C © Leslie Pendrill 060606 a1 x a2 a3 E0 E1 y E2 E 3 M 4 8001000 800 T 1000 T (C) 1 T x A A A y fit a2 = 6.37 10-3µV/ °C T Least-squares fit a3 = -2.651 10-6 µV/ °C Bentley exercise 2.1 4 Advanced Measurement Uncertainty Analysis 2.1 Answer E(T) = a1T + a2T2 + a3T3 5 10 16 . R 0 0 y = A.x 200 400 Vc A A 1 a1 = 5.83969718 (0) µV/ °C 800 1000 T R Ax y T 600 Residuals ( R R) M N 1 M=4 N=3 a2 = 6.36808419 (0) 10-3µV/ °C a3 = -2.65055967 (0) 10-6 µV/ °C © Leslie Pendrill 060606 Bentley exercise 2.1 5 Advanced Measurement Uncertainty Analysis Multivariable measurements 2. Regression Y F(X) d = A.c c= (AT.W.A)-1.AT.W.d 2 Weighting matrix Wi, i 1 . si 1 1 i si 2 Z f :X Measured quantities © Leslie Pendrill 060606 Sought quantities 6 Advanced Measurement Uncertainty Analysis Multivariable measurements 2. Regression Y F(X) c= (AT.W.A)-1.AT.W.d d = A.c 1 1 . . . . VcAW A (R R ) vav MN T . Group variance © Leslie Pendrill 060606 1 1M 2 vav u (y i) Mi0 Experimental variance 7 5 10 Advanced Measurement Uncertainty Analysis 16 2 10 2.1 Answer R 0 7 E(T) = a1T + a2T2 + a3T3 E Ebis 0 Weighted least-squares fit 0 T 0 T1 A T 2 T 3 0 T12 T22 T32 T 2 0 3 T 1 3 T2 T33 T 2 10 7 200 0 T -1 T.W.y xfit= (A 200 400.W.A) 600 400 600 800 .A800 1000 1000 T 3 a1 x a2 a3 E0 E1 y E2 E 3 T 1 1 0 5 1 10 V uE 6 3 10 4 .9 1 0 5 1 5 W i i uEi 2 M 1 1 i 0 u Ei 2 M 4 M=4 a1 = 5.8(4) µV/ °C N=3 a2 = 6.3(1.5) 10-3µV/ °C a3 = -2.6 (1.2) 10-6 µV/ °C © Leslie Pendrill 060606 Bentley exercise 2.1 8