Waste Management for FET

Download Report

Transcript Waste Management for FET

Base Camp Challenges in Afghanistan

Talking Trash to Implement Green Changes while completing the mission AND

saving lives, money, resources

LTC Robert Tucker, Ph.D.

29-Apr-20 1

Agenda

Engineer Responsibilities in Theater

Base Camp Challenges in Afghanistan

      

Components of typical Army trash Systems approach to waste management Possible solutions to complex problems Foaming issues Water cycles and use Cultural Heritage and Protected Items Land farming

29-Apr-20 2

Basic Axioms of Engineering

As capable engineers you know that:

water runs down hill

engineering decisions are best left to engineers and not combat arms officers

the mission of combat engineers is to break things or in a pinch, build latrines and combat trails

construction engineers build things and fix up what combat engineers broke

mud is an engineer's most persistent foe; but, when properly harnessed is your best ally in defense

At some point in the near future you will be heading to a base camp in a third world country and will be expected to know ALL things engineering

• 29-Apr-20

Environmental stewardship and mission completion are not mutually exclusive

3

Landpower and the Engineer

• • • • • 29-Apr-20

Landpower is the ability-by threat, force, or occupation to promptly gain, sustain, and exploit control over land, resources, and people. FM 1 … you may fly over a land forever, you may bomb it, atomize it, pulverize it and wipe it clear of life - but if you desire to defend it, protect it, and keep it for civilization, you must do this on the ground, the way the Roman legions did, by putting your young men into the mud. T.R. Fehrenbach FM 1 pg 1-1 Getting the youth of America's Armed Forces out of the mud is a priority mission for the engineer's.

R.E. Tucker Getting land forces, air forces and naval forces across the next obstacle and their capabilities into the close and deep fight is an engineer's priority mission .

R.E. Tucker Planning, constructing, and management of base camp infrastructure is an engineer's priority mission . R.E. Tucker

4

Environmental Missions

• •

Four main functions

– – – – –

Solid waste management Liquid waste management Cultural Heritage Protection Endangered Species Protection (Energy systems) Relooking theater wide programs

– –

Assisting with master planning at all levels Assisting with energy proposals (waste to fuels, methane production)

Innovative solutions, reuse programs, trading waste for products and/or services

Waste Management Systems

• •

No Waste Segregation

– –

Burning then burying - worst option Managed Landfill - not viable

With Waste Segregation

– –

Composting of organics Recycle materials (e.g., metals, wood)

– – –

Incineration of organics

Hydrolyses of all waste fluff $$ Pyrolysis of plastics/tires fuel

29-Apr-20 6

Graphical Representation of End of Mission Clean up cost spike due to lawful compliance requirements often resulting from poor and/or uninformed operating practices during mission execution. It is sometimes unfortunate when the clean up spike is larger than the initial cost of a cleaner system

.

savings high initial investment with low recurring costs break even point low upfront costs but linear increase with time time (in months) x = b2 - b1 m1 - m2 b is Y intercept m is slope

29-Apr-20 7

29-Apr-20

Components of Solid Waste

• • • • • • • • •

From a study conducted in Bosnia in June 03 component Plastic bottles other plastics cardboard other paper food waste glass cans (Al & steel) textiles, PS, misc wood percentage weight, kg/day 24% 11% 28% 14% 4% 3% 2% 3% 1100 533 1300 667 188 148 78 149 15,000 recycle compostable reduce or dump recycle reduce or dump reuse or compost

8

Pros and Cons - Burning

• •

Pros –

– – – –

very easy to begin, cheep to operate good volume reduction generally done outside the wire simple to operate burn pits and covering Cons –

produces toxic smokes, many components are carcinogens

– – –

probable ground water and ground contamination requires a lot of land Force Protection issues with soldiers or TCNs going outside the wire

– –

always causes conflict with local populace undoubtedly will have a very high remediation cost at end of mission due to high concentrations of metals and possible ground water contamination

29-Apr-20 9

29-Apr-20

A Typical Burning Operation

10

29-Apr-20

An Incinerator Operation in Iraq - 2005

incinerator metals and bottles must be removed from feed stock sorting is done by hand after a truck dumps its load on a concrete pad, with no over head cover

11

29-Apr-20

Need for System Approach

ash pile

stock pile of cans and glass DAH lessons here?

12

29-Apr-20

This is not an incinerator

Air Curtain Destructor used in the Balkans and other CONOPS

Not designed for anything but wood and paper, NOT wet garbage or plastics

13

Afghanistan Solid Waste Management

• • • •

Initiating new processes to reduce, reuse, recycle, remove, rebuy MILCON projects added waste treatment yards, water treatment facility

Composting

– – – – – –

Land farming (savings of ~$4 mil this year) Recycling theater wide (DTM, Balad) Oil Cat to recycle oil in tactical vehicles Used oil for gravel swap at BAF (>$4 mil savings) Shredded paper into fuel donuts - new project Plastics and aluminum into products Incinerators Switching from paper to dishes

Example of Costs at BAF 09

Product Used oil waste fuel rags, filters contam soil lithium bat drums 2736 1676 1984 156 203 cost $ 2.05 m $ 1.26 m $ 1.49 m $ 0.117 m $ 0.152 m In 2010, we saved >$4m by land farming PCS and pooh pond sludge from KAF

Solid Waste Facility

solid waste in aluminum cans & water bottles sort facility compacting markets incinerate small amounts of trash ash composting land farming agriculture land fill with minimal effort, nearly all solid waste will find a “home” and not have to be burned

Processes

composting HAZMAT yard

Components

wood, paper, cardboard, metals, batteries, covered waste, tires, textiles, other plastics markets, proper disposal markets 4/29/2020 16

Recycling Facility Resource Areas

• • • • • • • •

HAZMAT Yard Incineration Area or (burn pit) Sort Area Administration Area and Scales Power Generation Area Compacting Area Storage Bins Composting area

• • • • • • • •

MINIMUM Recycling Facility Resource Areas for Large Bases

HAZMAT Yard

200 ft x 300 ft = Incineration Area or (burn pit)

300 ft x 300 ft = Sort Area

150 ft x 150 ft = Administration Area and Scales

Minimum 70 ft x 70 ft = Power Generation Area

100 ft x 100 ft = Compacting Area

200 ft x 450 ft = Storage Bins

100 ft x 200 ft = Composting Area

300 ft x 300 ft = 60000 sq ft 90000 sq ft 22500 sq ft 4900 sq ft 10000 sq ft 90000 sq ft 20000 sq ft 90000 sq ft Total 387400 sq ft = 8.9 acres round up to 9 acres and/or 3.7 hectares

MINIMUM Recycling Facility for Bn level (below 4000 Pax?), area collection and transit site • HAZMAT Yard – Bn 2000 Pax 100 x 100 = • Incineration Area or (burn pit) – 200 x 200 = • Sort Area – 150 ft x 150 ft = • Administration Area – 70 ft x 70 ft = • Power Generation Area – 100 ft x 100 ft = • Compacting Area – 100 ft x 100 ft = • Storage Bins – 100 ft x 100 ft = 10000 sq ft 40000 sq ft 22500 sq ft 4900 sq ft 10000 sq ft MAYBE 10000 sq ft MAYBE 10000 sq ft Total 107400 sq ft = 2.5 acres = 1.0 hectare

Liquid Waste Management

• •

Goal is to reduce the “pump and dump” or pixie dust treatment syndrome with proper waste treatment facilities

Lagoons on partnered bases

US bases, use package plants on small FOBs and package/lagoons on larger bases Focus on using water as many times as possible

Purple pipe systems

Limit RO systems for general use due to cost and waste generated

source

Integrated Water System

disinfection potable water water bottling plant end user non-potable water

DFAC

cooking washing dishes solid waste stream sludge to: composting land farming agriculture gray water cleaned

purple pipe loop

4/29/2020 laundry

showers & sinks

stools waste treatment lagoons effluent, agriculture multiple reuse options 21

Washing vrs Paper ware

• •

BAF/KAF size base, ~25,000 PAX

$21,000/day for paper and plastic products or a cost of $7.6 million/yr

generates ~7,300 lbs of solid waste/day or 2.7 mil/yr

assume a fully burdened cost factor or 4 the cost soars to $30 mil/yr Payback period for changing to washing dishes (includes cost of buying all materials for a kitchen) is 45 to 50 days!

29-Apr-20 22

Foaming Tents Energy Conservation

Full Life Cycle Management Requirements

Life Cycle Costs of Foaming a Tent

• • • • • •

Loss of mobility of tent to Army Loss of ~$10,000 for tent

without considering fully burdened cost to get tent into theater Cost of foaming (~$7/sq ft), ~$10,500/tent Cost of burial (~500 cu ft/tent) ~$10,000 Replacement cost of new tent ~$10,000 Replacement of ECU to smaller size ~$5,000

Life cycle investment cost is over $45,000

4/29/2020 24

Potential Savings by Foaming

• • • • •

Fuel savings by having ECU run less

– – – –

30 Kw generator at 60% capacity use ~2.3 gal/hr Same generator at 40% capacity uses about ~1.8 gal/hr ASSUME 0.3 gal/hr fuel savings (due to excessive cycling) 0.3 gal/hr x 24 hr = 7.2 gal/day (use 8 gal/day) Assume retail value of fuel at $3/gal = $24/d

$45,000/$24 = 1875 days (5.1 years) for payback Assume retail value of fuel at $5/gal = $40/d

$45,000/$40 = 1125 days (3.1 years) for payback Assume a fully burdened cost factor of 10 or $30/gal provides a savings of $240/d ~ 50% of the tents are showing significant cracking in less than 360 days and may need to be replaced

4/29/2020 25

Distracters

• • • •

FOBs are reporting that foamed tents have mold and/or fungus growing between the foam and tent (due to high humidity and organic substrates in tent because they no longer breathe) Foam will release significant toxic gases if there is a fire (HF in most foams used in theater) Current ECUs are over sized for the tent space and should be resized to about 2 ton (capital investment required) Current environmental mono-fill burial policy in place; but, most FOBs do not have the space for burial – we end up hauling foam around theater (could negate the fuel savings during operations)

4/29/2020 26

Analysis of one tent block

One tent block near the XXXX Red Horse team tent was examined for wear

• •

The foam on the tents is about a year old 21 of the 27 tents showed cracks, some damage was significant with small chunks of foam missing and or broken away from the tent and two were evidently leaking

Patched foam was not coated and during the rain, acted like a sponge for water

Inside of the tent was not checked for mold

4/29/2020 27

Foamed Tent Block

X 9 5 X 9 4 X X X X X X X X X X X X X X X X X X X X X X 9 3 8 8 X 8 3 X X X 7 X X 8 X X X X 7 2 X X X 6 6 X X X X X 6 0 5 4 5 1 X foam repair 4/29/2020 30 Kw generator supports two ECUs Foamed tent no cracks Foamed tent 78% have cracks Each tent has an ECU X indicates crack(s) in foam. Each tent has four segments, x indicates approximate location of cracks 28

4/29/2020

Pictures of Cracking, Tent 83

29

4/29/2020

FOB Shank Tent 76

Picture a Picture b 30

FOB Shank close ups

Picture B, close up. Shows one of the few spots where repair of a crack was done with what appears to be the water repellant coating Picture A, close up. Shows some of the most extensive cracking of foam within one tent section from the tents examined in this block.

4/29/2020 31

4/29/2020

Soldier Repair Kit

32

Tent Foaming Detractors

• • • • • •

Fuel saving – depends on following factors:

need to reduce size of HVAC. Otherwise the same current load capability is required, thus the generator will run at a lower efficiency

works best with centralized power grid Foam used must not degas toxic or harmful compounds Correct sealant(s) must be used Install thermostats to regulate temperature and moderate expectations on temperature inside a tent (65-68 winter and 80-85 in summer), use fans to move air Correct for energy used to dehumidify structure to prevent mold and other health effects Determine Full Life Cycle cost in analysis

examine full disposal cost of foam and tent

cost of replacing the tent to inventory

Alternatives to Foaming

Build wooden structures correctly with insulation or retrofit with insulation

Use PV sunshades over tents to provide convenience electricity (e.g., computers, iPods)

• •

Add winterization kits to tents Use fans and tent flaps to mediate temperature

Set reasonable temperature expectations

Greenish Energy Alternatives

• • • • • •

Conservation Solar potential – cost and expectations Methane from sewage and DFAC waste Add generators to exercise equipment to add power to grid Wind potential (minimal) Limit transportation of “stuff” into theater

Cultural Heritage Projects

Support to the National Museum

Renovations to existing building

Support for new wing addition

Support to the Antiquities Institute

Construction of prefab storage and sorting facilities at Mes Aynak and other active digs

Construction of restoration and storage facilities in Kabul

Requirements For National Museum

• • •

Need technical support from Corps to:

– – – – –

assist in design of proposed new wing assist with renovation planning design security system for museum artifacts design system to utilize PV and solar panels assist in training university students Interface with international community to identify sites for Regional or Provincial Museums Design and construct Provincial Museums

Requirements for the Archeological Institute

Need technical support from Corps to :

assist in design of proposed new storage facility

assist in design of proposed new artifact restoration facility, incorporating natural light, PV, and solar panels, identify equipment needs

design security system for artifacts

assist in design of storage facility and artifact preparation facility on Mes Aynak and other sites

– –

assist in training university students assist in field work as security permits

29-Apr-20

Cultural Sites are Everywhere

39

Mes Aynak on Top of Copper Ore

29-Apr-20 40

29-Apr-20

Stupa in Monastary

41

29-Apr-20

Archaeologist at work

42

Murals

29-Apr-20 43

29-Apr-20

Copper Mines and Stained Rock

44

Ancient Slag and Russian Trenches

29-Apr-20 45

29-Apr-20

Environmental Protection

Bear Coat Stripes and spots not good Cultural Heritage Items

46

Personnel Requirements

• • • •

Mandatory Center of Expertise for the Curation and Management of Archaeological Collections Two to four personnel in country on 6-12 month tours to support National Museum, Archaeological Institute, Site assessments across theater, LNO with DoS Reach back capability Capability to JARB resources to support continuing requirements

Landscape Analysis

• • •

Need to review as much satellite data as possible to determine the impact of natural events on selected sites and develop any remediation steps to curb disruption at the site (in coordination with DAFA and sites our military activities impacted) To curb illegal digging at sites, identify where such activity could be occurring (more on this later) Identify possible new sites for examination near mineral deposits or ancient trade routes or militarily significant sites

• • • • • 29-Apr-20

Conclusions

Burning waste produces potentially toxic smokes that can impact our mission execution and bring ill will of host nation populace Sewage lagoons and burn dumps can contaminate the ground water and surface area where our Soldiers and support personnel live Sloppy waste management practices may breed disease vectors and/or attract vermin that will make our Soldiers and support personnel sick High cost of FOB clean up when the mission is complete is paid by the US taxpayer (including your grandparents)

Environmental Stewardship SAVES LIVES and resources; brings good will with host nation populace ergo increasing Force Protection support, protects our Soldiers and staff so they may return home safely

49

29-Apr-20

Questions and Answers

50