Transcript Slides of PCA for face recognition
2013
Scientific Computing
Face Recognition Image database: A: 2 F:
2020/5/2
G: B: C: D: E: Test image: Who is this guy?
Characteristics of FR:
•
A mode of biometric identification
•
Easy for human, hard for machine
2
2013
Scientific Computing
Biometric Identification Identification of people from their physical characteristics, such as
• • • • • • •
faces voices fingerprints palm prints hand vein distributions hand shapes and sizes retinal scans 3
2020/5/2 3
2013
Scientific Computing
FR via PCA
Efficient computation Proven mathematics Applicable to face detection
4
2020/5/2 4
2013
Scientific Computing
Problem Definition
A dataset of face images of n person An unknown person’s face image Output:
Determine the identity of the unknown person
5
2020/5/2 5
2013
Scientific Computing
ATT Face Dataset 6
Olivetti Research Laboratory, 1992~1994 Stats:
40 subjects, each with 10 images Characteristics
Same-size photos of black and white
Centered faces of different poses
6
2013
Scientific Computing
Face Recognition via PCA
Compute Mean Face Compute Eigenvectors (Eigenfaces) Select 6 Principal Eigenfaces Subtract Facial Signatures
f
i
6 1
w i u i
7
400 400 400
2013
Scientific Computing
8 Steps of Feature Extraction via PCA
Mean face is subtracted from each column.
Find the eigenvectors of F*F’.
Select top k eigenvectors with k largest eigenvalues k eigenfaces!
Do projection along these eigenfaces to find new features for classification 8
2013
Scientific Computing
Details for Step 2: PCA
Problem: is large,10304x10304! (849MB!) How to compute the eigenvectors of ?
If u is the eigenvector of F’F, then Fu is the eigenvector of FF’.
is the eigenvalue eigenvalue of FF’.
9
F’F has 400 eigenvalues, corresponding to the 400 largest eigenvalues of FF’.
2013
Scientific Computing
Details for Step 3: Projection (1/2)
10
2020/5/2 10
2013
Scientific Computing
Details for Step 3: Projection (2/2)
face (after mean subtraction) can be represented by this basis:
11
The feature vector of the face is then the new coordinates obtained by:
u
4
2020/5/2 11
2013
Scientific Computing
Classification
12
2020/5/2 12
2013
Scientific Computing
Face Detection Using Eigenfaces 13
2020/5/2 13
2013
Scientific Computing
Distance from Face Space (DFFS) 14
2020/5/2 14
2013
Scientific Computing
PCA for ATT Dataset Variance vs. no. of eigenvalues used 16 eigenfaces 15
2020/5/2 15
2013
Scientific Computing
PCA for ATT Dataset: Accuracy Accuracy vs. no. of eigenvalues used
Accuracy of 98.50% is achieved when the dimensionality is 28.
16
2020/5/2 16
2013
Scientific Computing
PCA for ATT Dataset: DFFS 17
2020/5/2 17
2013
Scientific Computing
PCA for ATT Dataset: Similarity 18
2020/5/2 18
2013
Scientific Computing
PCA for ATT Dataset: Demo Face Recognition via PCA (eigenfaces)
load faceData.mat frOpt.method='pca'; frOpt.pcaDim=7; frOpt.plot=1; faceRecogDemo(faceData, frOpt);
19
2020/5/2 19
2013
Scientific Computing
PCA+LDA for FR Steps for FR via fisherfaces: 1.
2.
Perform PCA to reduce to 60 dimensions Perform LDA to find the best dimensionality
99.00% when the dimensionality is 14.
20
2020/5/2 20