The quarter Wave Transformer

Download Report

Transcript The quarter Wave Transformer

European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
IMPEDANCE
TRANSFORMERS
AND
TAPERS
Lecturers:
March 2010
Lluís Pradell ([email protected])
Francesc Torres ([email protected])
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
The quarter-Wave Transformer* (i)
A quarter-wave transformer can be used to match a real impedance ZL to Z0
Zin
Z0
If

Z1

0
4
Z12
Z in 
ZL
At a different frequency Z in  Z 0
in
Z0

ZL
Z in  Z1
Z L  jZ1t
Z1  jZ L t
The matching condition at fo is Z1  Z L Z 0
and the input reflection coefficient is
Z in  Z 0
Z L  Z0

Z in  Z 0 Z L  Z 0  j 2t Z L Z 0
The mismatch can be computed from:
1
in 
1
*Pozar 5.5
t  tg  tg
4Z L Z 0
Z L  Z 0 2 cos2 
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
The quarter-Wave Transformer (ii)
If Return Loss is constrained to yield a maximum value m , the
frequency that reaches the bound can be computed from:
m
cos m 
2 Z LZ0
1  m
2
Z L  Z0
Where for a TEM transmission line
   
 0
vp 4

2f v p
 f

v p f0 4 2 f0
And the bound frequency is related to the design frequency as:
fm 
2 m f 0

European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
The quarter-Wave Transformer (iii)
Finally, the fractional bandwdith is given by

m
2 f 0  f m 
4
f 
 2  cos1 
f0

 1  m
2

2 Z LZ0 
Z L  Z0 

BW  4,5 %
Z L / Z0  10
Z L / Z0  4
Z L / Z0  2
BW  18,1 %
m  0,05
  l 
 f
2 f0
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Multisection transformer* (i)
The theory of small reflections

In the case of small reflections, the reflection
coefficient  can be approximated taking into account
the partial (transient) reflection coefficients:
L
0 
  0  L e
2 j
Z1  Z 0
Z1  Z 0
  
Z L  Z1
L 
Z L  Z1

0
4
0 

2
That is, in the case of small reflections the permanent reflection is
dominated by the two first transient terms: transmission line discontinuity 0
and load L
*Pozar 5.6
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Multisection transformer (ii)
The theory of small reflections can be extended to a multisection transformer



Z0
0
Z1
ZN
Z2
1
2
ZL
N
   
 0  1 e2 j  2 e4 j  ...   N e2 jN ; i 
Zi 1  Zi
Zi 1  Zi
(i  0,1,..., N )
It is assumed that the impedances ZN increase or decrease monotically
Symmetric  0  N , 1  N 1, 2  N 2 ,...
The reflection coefficients can be grouped in pairs (ZN may not be symmetric)


    e jN 0 e jN  e jN   1 e j ( N 2)  e j ( N 2)   ...
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Multisection transformer (iii)
The reflection coefficient can be represented as a Fourier series
1


    2e jN  0 cos N  1 cos( N  2)  ...  i cos( N  2i )  ...   N / 2 
2


for N even
    2e  jN   0 cos N  1 cos( N  2)  ...  i cos( N  2i )  ...   ( N 1) / 2 cos   for N odd
Finite Fourier Series: periodic function (period:   )
F  
Any desired reflection coefficient
behaviour over frequency can be
L
synthesized by properly choosing the
coefficients i and using enough
sections:
• Binomial (maximally flat) response
• Chebychev (equal ripple) response
L 
0

2

Z L  Z0
Z L  Z0

European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Binomial multisection matching transformer (i)
Binomial function
    A(1  e
2 j
)  2 Ae
N
N
 jN
 cos 
N
The constant A is computed from the transformer response at f=0:
A  2 N
(0)  2 N A
The transformer coefficients n
N
( )  A C e
Z L  Z0
Z L  Z0
are computed from the response expansion:
N!
C 
N  n !n!
N
n
n  ACnN
The transformer impedances Zn are then
computed, starting from n=0, as:
 Z n 1   N N  Z L 
  2 Cn ln 
ln
 Zn 
 Z0 
n 0
N
n
 2 jn
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Binomial multisection matching transformer (ii)
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Binomial multisection matching transformer (iii)
Bandwidth of the binomial transformer
The maximum reflection at the
band edge is given by:
m  2N A cosN m
1   
 m  arccos   m 
 2  A 
1/ N

 
  arccos  m 

 L 
m
Z L / Z0  2
1
N
BW  71 %
( N  3)
The fractional bandwitdh is then:
0.05
 1   1/ N 
f 2( f 0  f m )
4m
4

 2
 2  arccos   m  
f0
f0


 2  A  
1
  l 
 f
2 f0
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Chebyshev multisection matching transformer
Chebyshev polynomial
 cos  
    A e jN TN 

cos

m 

Z L / Z0  2
Tn ( x)  cos(n cos1 x), for x  1
Tn ( x)  cosh(n cosh1 x), for x  1
BW  102 %
( N  3)
A
Z L  Z0
Z L  Z0
m  0,05
1
 1 
TN 

cos

m


  
cosh  L 
 m 
N
 1 
cosh 1 

 cos m 
1
1
cos  m 
1
 1 Z L  Z0
cosh  cosh 1 
 N
 m Z L  Z 0




  l 
 f
2 f0
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Chebyshev transformer design
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Chebyshev transformer design
Application: Microstrip to rectangular wave-guide transition: both source
and load impedances are real.
Ridge guide
section
Microstrip line
Steped ridge guide
Ridge guide: five λ/4 sections: Chebychev design
Rectangular guide
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
TRANSFORMER EXAMPLE (1):
ADS SIMULATION
Chebyshev transformer, N = 3, |M|=0.05 (ltotal = 3/4)
50 W
57,37 W
70,71 W
87,14 W
100 W
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
TRANSFORMER EXAMPLE (2):
ADS SIMULATION
CHEBYSCHEV N=3
mag(S(1,1))
0.4
0.3
0.2
BW = 102 %
0.1
m  0,05
0.0
0
2
4
6
8
10
12
14
16
18
20
microstrip loss
freq, GHz
0
0.0
-0.2
dB(S(1,2))
dB(S(1,1))
-10
-20
-30
-0.4
-0.6
-40
-0.8
-50
0
2
4
6
8
10
12
freq, GHz
14
16
18
20
0
2
4
6
8
10
12
freq, GHz
14
16
18
20
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
Tapered lines (i)
Taper: transmission line with smooth (progressive) varying impedance Z(z)
The transient ΔΓ for a piece Δz of transmission line is given by:
 
Z  Z   Z
Z  Z   Z
In the limit, when z
dz  

Z
2Z
0:
1
d Z z 
2Z
This expression can be developed taking
into account the following property:
d Ln f z 
1 d  f z 

dz
f ( z ) dz
ZL
Z  z
Z0
0
L

z
Z  Z
Z
z
z  z
1
1 d Ln f z 
d  f  z  
dz
2 f ( z)
2
dz
z
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Tapered lines (ii)
1 d Ln Z  z 
d  z  
dz
2
dz
Taking into account the theory of small reflections, the input reflection coefficient
is the sum of all differential contributions, each one with its associated delay:
in     dz e
L
 2 j z
0
  L
Z z 
Taper electrical length
•Exponential taper
•Triangular taper
•Klopfenstein taper
1 L  2 jz d Ln Z z 
  e
dz
2 0
dz
Fourier Transform
d Ln Z  z 
dz
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
Exponential Taper
Z  z   Z0e z
for 0 <z < L
Z 0  Z 0 

Z L   Z L 

1  ZL 
ln 

L  Z0 
d Ln Z  z 

dz
1 L  2 j z
in      e
dz
0
2
Fourier Transform
L
(  L ) 
ln Z L / Z 0  j L sin  L
e
2
L
(sinc function)
 min L  
L
max
2
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Triangular taper


Z  z    Z0  4 z 2 z2   Z L 
 
1 ln 

 L L2
  Z0 
 Z0e

 2 z2   Z 

 ln  L 
 L2   Z0 
e 
 ZL 
d  ln   4 z  Z L 
ln
 Z 0    L2  Z0 
4
 ZL 
dz
 L2 ( L z )ln Z0 
0  z  L/2
L/2  z  L
0  z  L/2
L/2  z  L
 Z   sin(  L / 2) 
1
   L   e  j L ln  L  

2
 Z0    L / 2 
2
(squared sinc function)
- lower side lobes
- wider main lobe
L
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Klopfenstein Taper
   L  L e
 j L
cos
  L
2
 A2
cosh A

(  L  A)
Based on Chebychev coefficients
when n→∞. Equal ripple in passband
passband :  L  A
L 
Z L  Z0
1 Z 
 ln  L 
Z L  Z0
2  Z0 
L
m 
cosh A
Shortest length for a specified |M|
Lowest |M| for a specified taper length
Z L / Z0  2
ltaper = 
L
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Example of linear taper: ridged wave-guide
Microstrip to rectangular wave-guide transition
SECTION C-C’
SECTION B-B’
SECTION A-A’
Rectangular
guide
Ridged
guide
Microstrip
line
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Example of taper: finline wave guide
Rectangular wave-guide to finline to transition
Finline mixer configuration
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
TAPER EXAMPLE (1):
ADS SIMULATION
ADS taper model
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
TAPER EXAMPLE (2):
ADS SIMULATION
Aproximation to exponential taper using ADS : 10 sections of /10
50 W
57,44 W
53,59 W
100 W
93,30 W
61,56 W
87,05 W
65,97 W
81,22 W
70,71 W
75,79 W
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
TAPER EXAMPLE (3):
ADS SIMULATION
Aproximation to exponential taper using ADS : 10 sections of /10
50 W
53,59 W
57,44 W
61,56 W
70,71 W
75,79 W
81,22 W
87,05 W
100 W
65,97 W
93,30 W
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
TAPER EXAMPLE (4):
ADS SIMULATION
EXPONENTIAL / ADS TAPER
0
m1
m3
freq=7.170GHz freq=9.980GHz
m1=-22.116
m3=-32.452
m1
dB(S(3,3))
dB(S(1,1))
-20
m3
-40
-60
-80
0
2
− 10 section approx.
− ADS model
4
6
8
10
12
freq, GHz
14
16
18
20
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
TAPER EXAMPLE (5):
ADS SIMULATION
Exponential taper
mag(S(3,3))
mag(S(1,1))
0.4
0.3
0.2
ltaper =  @ 10 GHz
0.1
m  0,05
0.0
0
2
4
− 10 section approximation
− ADS model
6
8
10
12
freq, GHz
14
16
18
20
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
TAPER EXAMPLE (6):
ADS SIMULATION
10 section taper: periodicity in frequency
0
m1
m1
freq=49.41GHz
m1=-9.824
(li=/2)
dB(S(3,3))
dB(S(1,1))
-20
-40
m2
-60
-80
0
m2
freq=9.980GHz
m2=-65.843
(li=/10)
20
40
60
− ADS model
freq, GHz
− 10 section approximation is periodic.
80
100
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
MATCHING NETWORKS
LEVY DESIGN
Lecturers:
Lluís Pradell ([email protected])
Francesc Torres ([email protected])
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
MATCHING NETWORKS
Z0
Vs
Pd1
PdL
Matching
Network
(passive lossless)
r1  f 
2
PdL
Pd 1
1
2
Gt   


 1  r1    1
PavS PavS M1
2
Minimize |r1 (f)|
Maximize Gt(2)
r f
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
CONVENTIONAL CHEBYSHEV FILTER (1)
g3
g1
LC low-pass filter
g n 1  Rn 1
g0
Conversion from
Low-Pass to BandPass filter
LS1
CS 1
LS 3
1 
0 


w  0
 
  1
f  f1
Relative bandwidth
w 2
 2
0
f0
' 
gn
g2
02  21
Center frequency
CS 3
LsiCsi 
Z0
LP 2
RN 1  g N 1.Z 0
CP 2
LPN CPN
1
02
 LpiC pi
Lsi 
gi Z 0
w0
, Csi 
1
w

02 Lsi 0 gi Z0
C pi 
gi
, Lpi 
1
wZ0

02C pi 0 gi
w0 Z 0
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
CONVENTIONAL CHEBYSHEV FILTER (2)
Gt ( ' 2 )
1
Gt  '  
1   n2Tn2  ' 
2
1
Pass-band ripple
GtMAX ( T 0 )  1
n
GtMIN ( T 1) 
n
1
1   n2
'
1
r  10log
GtMAX
GtMIN
 10log 1   n2 
 dB 
Chebychev polynomials
cos  n cos 1  x   , x  1

Tn  x   
1
cosh  n cosh  x   , x  1
Gt ( 2 )
1
1
1   n2
 02  1. 2
1
0
2

European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
CONVENTIONAL CHEBYSHEV FILTER (3)
g0  1
g1 
2 • sin(

2n
Fix pass-band ripple and filter order “n”
)
,
x
g i • g i 1 
4 • sin(
x  sinh( a ) ,
2i  1
2i  1
 ) • sin(
)
2n
2n
i
x 2  sin 2 (
)
n
(i  1, 2,...., n  1)
g n g n 1 
2 • sin(

2n
)
x
g0, g1,.., gn+1 are the low-pass LC filter coefficients: w1'  1
n 
1
sinh( na )
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
APPLICATION TO A MATCHING NETWORK
Ce
L'S 1
Le
CS' 1
Transistor modeled with a dominant RLC
behaviour in the pass-band to be matched
RN 1  g N 1.Re
Re
Transistor
Model
LP 2 CP 2
 
2.sin   . R e
g .R
 2n 
Ls1  1 e 
w.0
x.w.0
Ls1  Ls1  Le  Ls1 , Le
'
Cs1 
CeCs1
'
'
Ce  Cs1
given
 Cs1 , Ce
'
'
LPN CPN
Ls1Cs1 
1
r
   n  a  x  g1  Ls1  Le ?
n
02
increase n (n constant)
a, x decrease
or increase n (n constant)
a, x decrease
Solution (?):
The final design may be out of specifications: n too high (too many sections) or r too large
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
LEVY NETWORK (1)
SOLUTION: An additional parameter is introduced: Kn<1
Gt  '2  
Gt ( ' 2 )
Kn
1   n2Tn2  ' 
( Kn  1)
Kn
Kn
1   n2
GtMAX ( T 0 )  K n
n
GtMIN ( T 1) 
n
r  10log
Kn
1   n2
GtMAX
GtMIN
 10log 1   n2 
cos  n cos 1  x   , x  1

Tn  x   
1
cosh  n cosh  x   , x  1
'
1
 dB 
Gt ( 2 )
Kn
Kn
1   n2
02  1. 2
1
0
2

European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
LEVY NETWORK (2)
SOLUTION: Additional design equations
g0  1
Example: n = 2
 
2.sin  
 2n 
g1 
x y
2i  1 
 2i  1 
4.sin 
  .sin 

2n 
2n 


gi gi 1 
 i 
 i
x 2  y 2  sin 2    2. x. y.cos 
n
n
 
2.sin  
 2n 
g n g n 1 
x y
x  sinh  a 
y  sinh  b  (new freedom degree)
1
n 
sinh  na 
sinh 2  nb 
Kn  1 
, ( K n  1)
sinh 2  na 
g0  1
 
2.sin  
4
g1 
x y



, (i  1, 2...., n  1)
g2 
1
2
· 2
g1 x  y 2  1
 
2.sin  
1
4
g3  ·
g2 x  y
x  sinh  a 
y  sinh  b  (new freedom degree)
2 
1
sinh  2a 
sinh 2  2b 
K2  1 
, ( K 2  1)
sinh 2  2a 
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
LEVY NETWORK (3)
Design procedure
a) Choose Cs1 or Ls1 taking into account the load to be matched
If
Ls1Cs1 
If
Ls1Cs1 
1
02
1
02
 LeCe 
 LeCe 
1
e2
1
e2
take
Cs1  Ce
 Ls1  Le
take
Ls1  Le
 Cs1  Ce
b) Choose network order (n) and compute g1
g1 
Ls1 .w.0
Re
or
g1 
w
0 .Cs1 .Re
c) Compute x-y from the parameter g1
 
2.sin  
 2n 
x y 
g1
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
LEVY NETWORK (4)
d) Choose x, compute y,
OPTIMAL DESIGN: minimize r
r  1  Gt
tgh  na  tgh  nb

cosh  a  cosh  b
2
r
2
MAX
 1  GtMIN  1 
cosh  nb 
Kn

1   n2 cosh  na 
Example: usual case n=2:
tgh  2a  tgh  2b 

For n=2:
cosh  a  cosh  b 
max
 r MAX
0
b
sinh  a   sinh b  x  y  ct
Optimum x
C2  C22  2
x
2
C2  x  y 
Select Ls1 (or Cs1) and n. Compute g1. and x-y. Then determine x, y and Kn, n:
xyb
a
Kn
n
The matched bandwith can be increased from
~5% to ~20% with n=2, with moderate Return
Loss requirements (~20 dB)
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
LEVY NETWORK EXAMPLE (1)
Ce
Le
Re
Matching
Network
Re  15, 2 W
 Le  0,52 nH 

  f e  8,86 GHz
C

0,62
pF
 e

R  50 W
 f1  5,5 GHz
 f 0  6, 4226 GHz

f

7,5
GHz
 2
R
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
LEVY NETWORK EXAMPLE (2)
 f1  5,5 Ghz

 f 2  7,5 Ghz
f 0  6, 4226 GHz
2
w
 0,3114
6, 4226
CS  Ce  0, 62 pF
LS 
g1 
( fe  f0 )
1
 0,99 nH
02CS
w
CS 0 Re
 0,8195
2sin( )
4  1, 7257
C2  x  y 
g1
RLmin  17.75 dB
C2  C22  2
x
 1,978  a  1, 434
2
y  0, 2535  b  0, 2509
RLmin  17.75 dB
K n  0,996  GtMAX  0, 015dB
RLmin  23.98 dB
  0,114  G  0, 071dB
n
tMIN
g 2  0, 4903  C p  2,57 pF , L p  0, 239nH
g3  1, 2928  R3  g3 Re  19, 65 W
Design and Analysis of RF and Microwave Systems
LEVY NETWORK EXAMPLE (3):
ADS SIMULATION
A transformer is necessary since g3≠1
(R3≠50 Ω). This transformed must be
eliminated from the design
LEVY NETWORK (LUMPED COMPONENTS)
0
0.0
-0.1
-5
-0.2
dB(S(2,1))
dB(S(2,2))
dB(S(2,1))
European Master of Research
on Information Technology
-10
-15
-20
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9
-25
-1.0
4
5
6
7
freq, GHz
8
9
4
5
6
7
freq, GHz
8
9
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
Norton Transformer equivalences
STEPS:1) the capacitor C2 is pushed towards the load through the transformer
2) The transformer is eliminated using Norton equivalences
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
0
0.2
-5
-0.0
dB(S(2,1))
dB(S(2,2))
dB(S(2,1))
LEVY NETWORK EXAMPLE (4):
ADS SIMULATION
-10
-15
-0.2
-0.4
-0.6
-20
-0.8
-25
-1.0
4
5
6
freq, GHz
7
8
9
4.5
5.0
5.5
6.0
6.5
7.0
freq, GHz
7.5
8.0
8.5
9.0
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
SMALL SERIES INDUCTANCES AND PARALLEL CAPACITANCES
IMPLEMENTED USING SHORT TRANSMISSION LINES
L, C elements are then synthesized by means of short transmission lines:
l
L
Z0h
2 f 0 L  Z 0 h  l  f 0 L  Z 0 h
l
0
l
C
Z0l
2 f 0 C  Y0l  l  f 0 C  Y0l
l
0
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
SMALL SERIES INDUCTANCES AND PARALLEL
CAPACITANCES IMPLEMENTED USING SHORT
TRANSMISSION LINES: EXAMPLE
LS  0,33 nH  Z 0h  106 W
L2  0,23 nH  Z0h  73,85 W
C2  1,02 pF  Z 0l  15,26 W
for
l1
0
l2
for
for

0
l3
1
50

1
50
1

0 10
Design and Analysis of RF and Microwave Systems
LEVY NETWORK EXAMPLE ADS SIMULATION (5):
0
0.2
-5
0.0
dB(S(2,1))
dB(S(2,1))
dB(S(1,1))
European Master of Research
on Information Technology
-10
-15
-20
-25
-0.2
-0.4
-0.6
-0.8
-1.0
-1.2
-30
4
5
6
7
freq, GHz
8
9
5.0
5.5
6.0
6.5
freq, GHz
7.0
7.5
8.0
Design and Analysis of RF and Microwave Systems
LEVY NETWORK EXAMPLE: ADS SIMULATION (6):
0
0.0
-0.5
-5
dB(S(2,1))
dB(S(1,2))
dB(S(1,1))
European Master of Research
on Information Technology
-10
-1.0
-1.5
-2.0
-15
-2.5
4
5
6
7
freq, GHz
8
9
5.0
5.5
6.0
6.5
freq, GHz
7.0
7.5
8.0
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
LEVY NETWORK EXAMPLE (7):
ADS SIMULATION: optimization
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
LEVY NETWORK EXAMPLE (8):
ADS SIMULATION: optimization
0
1.5
1.0
dB(S(2,1))
dB(S(2,1))
dB(S(1,1))
-5
-10
-15
0.5
0.0
-0.5
-20
-1.0
-25
4
5
6
7
freq, GHz
8
9
-1.5
4.5
5.0
5.5
6.0
6.5
freq, GHz
7.0
7.5
8.0
European Master of Research
on Information Technology
Design and Analysis of RF and Microwave Systems
LEVY NETWORK EXAMPLE (9):
ADS SIMULATION: optimization
Design and Analysis of RF and Microwave Systems
European Master of Research
on Information Technology
0
-5
-10
-15
-20
-25
4
5
6
7
8
9
dB(levy3_amb_T_optim..S(2,1))
dB(S(2,1))
dB(levy3_amb_T_optim..S(2,1))
dB(levy3_amb_T_optim..S(1,1))
dB(S(2,1))
dB(S(1,1))
LEVY NETWORK EXAMPLE (10):
ADS SIMULATION: optimization
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
4.5
freq, GHz
5.0
5.5
6.0
6.5
freq, GHz
7.0
7.5
8.0
8.5