System-reservoir interactions in quantum optics

Download Report

Transcript System-reservoir interactions in quantum optics

IWQSE 2013, NTU Oct. 15 (2013)

Witnessing Quantum Coherence

Yueh-Nan Chen ( 陳岳男 ) Dep. of Physics, NCKU National Center for Theoretical Sciences (South)

Outline

 Coherence and entanglement  Cavity QED  The Leggett-Garg Inequalities  Witnessing Quantum Coherence in Biological Systems

Teleportation

Quantum

Dense coding

Information

Secret sharing Key distribution

coherence and entanglement Quantum Computation

Algorithms

Bit

: 0, 1 or +, - or boy, girl…. Any two-level system t 0

1 0

t 1 t 2 time

Q-bit

: Any two-level and physical system (Quantum bit) Two-level atom

1

1

1

1

0

0 t 0 t 1

0

0 t 2 time

Two qbits : two spins

time Spin up A interaction t 0 A Spin up B Spin down B Spin down Schrodinger eq.

t A B

-

A B entangled state

Entanglement   1 2 

A

B

 1 2 

A

B

*.*?

Impossible to factory

( a1

A

+ a2

A

)

( b1

B

+ b2

Symbol of connecting to independent system B

)

薛丁格的貓:

To be

or

not to be?

Cavity QED

The Nobel Prize in Physics 2012

Serge Haroche David J. Wineland

The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche and David J. Wineland

"for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

• Spontaneous emission of single two-level atom   Interaction between a two-level atom and the photon reservoir :

H

   

q D

q b

q

 

e i

q

 

x

H

.

c

.

b

q

:

photon operator

  :

creating operator of atom

In the interaction picture, the state vector :  (

t

) 

f

0 (

t

)  ; 0   

q f

q

(

t

)  ; 1 

q

, where  ; 0  ; 1 

q

: an atom initially in the excited state : a photon of q in the radiation field

Results :

f

0 (

t

) 

e i

 

t

 

t

, where    is the decay rate represents the Lamb Shift The radiation intensity distribution :

f

q

(

t

  ) 2  (  0 

c

2 

q D

q

   ) 2   2 , where     

q D

q

2  (  0 

c

q

),     

q

  0

D

q

c

2 

q

 0 is the energy spacing

Two-level atom inside a cavity The interaction between the atom and single-mode cavity:  (

t

) 

f

 (

t

)  ; 0 

f

 (

t

)  ; 1

Vacuum Rabi oscillations J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys.

73,

565 (2001).

Vacuum Rabi splitting

Gate-confined Double Quantum Dots

Quantum Coherence in Double Quantum Dots

K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard, PRL 105, 246804 (2010)

Question: Are they truly quantum ?

The Robotic Bugs 1.0

機率 0.8

0.6

0.4

0.2

機率 0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t (s)

Quantum vs Classical Bell’s Inequality: Locality and Realism   1 2  01  10 

The Bell-CHSH inequality 

A

a

,

A

,

a

,

B

,

b

A

a

( 0 ,  2 ), (  2 , 0 )  

A

a A

a

   2 , 2   2 

AB

Ab

aB

ab

 2

AB

Ab

aB

ab

 2

Predictions of QM for the

singlet

state    1 2  01  10 

AB

      cos 

AB

 

QM violates the Bell-CHSH inequality

F

QM 

AB

Ab

aB

ab

  cos 

AB

 cos 

Ab

 cos 

aB

 cos 

ab a

ˆ   

x

y

 ( 

y

 

x

) /

b

ˆ  ( 

y

 

x

) / 2 2

F

QM  2 2  2 !

!

!

Leggett Garg Inequality (Bell’s inequality in time) Realism and non-invasive measurement

Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?

Leggett and Garg, Phys. Rev. Lett. 54, 857 –860 (1985)

Palacios-Laloy, A.

et al. Nature Phys. 6, 442

–447 (2010).

Distinguishing Quantum and Classical Transport through Nanostructures

Transport Charge Inequality:

N. Lambert, C. Emary, Y. N. Chen, and F. Nori,

Phys. Rev. Lett. 105

, 176801 (2010)

Double Quantum Dot

Violation of charge inequality for DQD

Quantum Transport in Organism ?

The Quantum Dimension Of Photosynthesis

Leggett-Garg inequality ?

Pigments (BChl) Reaction Center

Witnessing Quantum Coherence in FMO Complex C. M. Li*, N. Lambert*, Y. N. Chen*, G. Y. Chen and F. Nori,

Scientific Reports 2

, 885 (2012)

Avian Magnetoreception: a tale of two spins

http://www.technologyreview.com/blog/arxiv/27829/

Summary 1. Coherence and Entanglement 2. Cavity QED 3. The LG Inequalities 4. Quantumness in Biological Systems

Thank you for your attention!