Transcript V. Havranek

NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Laboratory of Ion Beam Analysis at NPI
Vladimír Havránek
Nuclear Physics Institute ASCR v.v.i, 250 68 Řež u Prahy, Czech Republic
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Presentation outline
Facilities
- 3.5 MV Van de Graaff accelerator (since 1964)
- 3 MV HVEE Tandetron accelerator (since 2005)
- Activities at LWR-15 research reactor
Analytical Techniques
- RBS, PIXE, ERDA, PIGE, PESA, NDP, PGAA
- High energy ion implantation
- Ion microanalysis
Applications
- Material research, biology, environment, history and
art, modification of materials with energetic ions, etc.
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Our electrostatic accelerators
VdG 1964
Tandetron 2005
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Tandetron MC 4130 Accelerator
Accelerator
RBS, RBS-C, ERDA-TOF
Ion implantation
PIXE, PIGE
Ion microprobe
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Interaction of MeV ions with the sample and
corresponding analytical techniques
Základní procesy
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Van de Graaff and Tandetron 4130 MC accelerators
(H-Au ions with energies 0.4-20 MeV and intensities up to several microamps)
Methods and main research fields
RBS, RBS-channeling, ERDA, ERDA-TOF
Analyses of composition and structure of layered, nano-structured materials, hard coatings, metal- polymer
composites, optoelectronics and microelectronics materials, oxidation and corrosion processes, diffusion
and migration of atoms in solids, processes of self organization (e.g. metal-carbon allotropes composites)
Ion microsonde
3D mapping of composition and structure of materials with lateral resolution of 1 micrometer, study of
biological objects ( recently Tycho de Brahe’s hairs), ancient ceramics, minerals. In 2010 first experiments
with ion writing
PIXE, PIGE
Environmental studies, mostly analyses of aerosols and micro-particles accumulated on filters
Ion implantation
Modification of solids (e.g. improvement of properties of selected microelectronics components),
simulations of radiation degradation of materials (e.g. polymers)
Devices installed on thermal neutron beam from LWR-15 research reactor
Methods and main research fields
Neutron depth profiling (NDP)
Analyses of few light elements (He, Li, B, N..), study of diffusion processes in solids (e.g. in
materials important for nuclear technologies and fusion programs), study of radiation degradation
of solids (e.g. polymers), development of polymer based sensors
Prompt gamma analysis (PGA)
Analyses of composition of materials (e.g. analyses of boron in biological samples for Neutron capture
tumor therapy). Method complementary to Neutron activation analysis.
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Příklady aplikace metod PIXE a PIGE
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
TOF-ERDA
The TOF-ERDA spectrometer set into operation in 2006 with
support and cooperation of Rossendorf group.,
The system consist of thin carbon foil start detector and particle
energy detector, which also provides the stop time signal. In the
near future the second stop detector will be add.
Example of TOF-ERDA spectrometer tests. Spectra of LiF (200
nm) deposited on glassy carbon. 15,4 MeV Cu6+ (Tv =2,2 MV)
Start detector
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
RBS-Channeling
The RBS-Channelling setup is only equipment which
was fully supplied by external vendor. It was bought
from NEC company USA and recently installed at -30
deg. beam line. The target chamber is equipped with fine
goniometer with five degrees of freedom (x,y,z,,) and
two charge particle detectors. Test experiments are now
in progress. There is also a possibility to add additional x
or -ray detector, so the PIXE or PIGE channelling
experiments can be performed in future. The setup will
be used for routine RBS-channelling and RBS
measurements.
Channeling
software
NuPECC Prague 2011
Ion
microbeam (since 2009)
V.Havránek Laboratory of IBA at NPI
1000 Cu mesh
Th inclusion 25x25m
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Microbeam target chamber
STIM
RBS
Microscope
PIXE
Far. cup
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Two Examples of Cobalt Blue Sherds found in the Excavated
Sediments from the Pool of the Royal Palace in Angkor Thom.
The sherds were first
irradiated with protons
frontally (Van de Graaff
Generator) and transversally
(Microbeam) of medium thin
(~2 mm) slices cut from the
original pieces.
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Elemental distribution maps 500x500 um
KK
Ca
Ti
Fe
Co
Si
White glaze
Blue glaze
Body
Transition Body/Glaze
Fe
0.59 %
0.88 %
0.73 %
0.43 %
Co
<0.02 %
0.60 %
<0.02 %
<0.02 %
Ca
9.5 %
12.0 %
-
4.7 %
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Comparison of Spatial Distributions for Co, Fe and Ca
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Cobalt inclusion – detail (maps 25x25 um for Fe, Co and As)
GUPIX fit of a cobalt inclusion defined as a region of interest
Elemental ratios
Co
As
As/Co
0.006 (0.6%)
Fe/Co
0.017 (1.7%)
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
EXAMPLES OF A SAMPLES HOLDER WITH MOUNTED
CEREBELLUM BRAIN SLICES AND LIGHT MICROSCOPE
IMAGES THEREOF
SAMPLE
HOLDER WITH
MOUNTED
BRAIN SLICES
SPATIAL WINDOW
CONTAING A BRAIN
SAMPLE
IRRADIATED WITH
PROTON BEAM
A LIGHT MICROSCOPE IMAGE
OF THE CENTRAL PART OF
THE CEREBELLUM SECTION
SCANNED WITH THE PROTON
BEAM.
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
S
Ca
Zn
Fe
Ni
Cu
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Oxidation of zirconium
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
1.8 MeV protons )
Zr RBS
18O a
Zr PIXE
Fe
18O b
Si
18O b
18O a
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Ion beam writing (hammering) using 10-12 MeV
focused beam of C, O a Si
into layer of PDMS (Polydimethylsiloxane)
In cooperation with Dr. Istvan Rajta, Atomki Debrecen, HAS
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
LVR-15 nuclear reactor REZ
RESEARCH REACTOR LVR-15
LVR15
LVR-15 IS LIGHT-WATER MODERATED AND COOLED
TANK NUCLEAR REACTOR WITH FORCE COOLING.
THE FUEL IRT-2M IS ENRICHED TO 36%, COMBINED
WATER-BERYLLIUM REFLECTOR IS USED.
MAIN CHARACTERISTICS:
Maximum reactor power
10 MW
Maximum thermal neutron flux in the core
1.5 x 1018 n/m2s
HCH-3
Maximum fast neutron flux in the core
3 x 1018 n/m2s
Thermal neutron flux at the end of the beam tube
1 x 1013 n/m2s
Thermal neutron flux in irradiation channel in fuel
1.2 x 1018 n/m2
Thermal neutron flux in irradiation channel in reflector
9 x 1017 n/m2s
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Thermal neutron guide tube
and TNDP chambers
TNDP
CHAMBERS
LVR-15
reactor hall
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
List of the NDP relevant isotopes
Nuclear reaction
Nuclide
Natural
abundance
or activity*
[at/mCi]
Cross
section
[barn]
Energy of
reaction
products
[keV]
Detection
limit
[at/cm2]
3He
0.00013
3He(n,p)3H
5326
573
191
3.1 x 1013
6Li
7.42
6Li(n,a)3H
940
2051
2734
1.8 x 1014
7Be*
2.5 x 1014
7Be(n,p)7Li
48000
1438
207
3.5 x 1012
839
4.3 x 1013
19.6
10B(n,a)7Li
3606
1471
10B
19.6
10B(n,a)7Li
230
1775
1014
6.7 x
14N
99.64
14N(n,p)14C
1.81
584
42
9.1 x 1016
22Na*
4.4 x 1015
22Na(n,p)22Ne
31000
2247
103
4.7 x 1012
33S
0.76
33S(n,a)30Si
0.14
3091
412
1.2 x 1018
35Cl
75.5
35Cl(n,p)35S
0.49
598
17
3.4 x1017
59Ni*
1.3 x 1020
59Ni(n,a)56Fe
12.3
4757
340
1.4 x1016
10B
1014
Basic reaction
characteristics of
the NDP relevant
isotopes, and
d e t e c t i o n
sensitivities for
the NDP singledetector spectrometer in the NPI
Rez.
Detection limits
are based on the
charged particle
counting rate
0.01 s-1, detector
-sample solid
angle 0.03 Sr,
and intensity of
the neutron beam
Fth = 107 cm-2s-1.
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Principles od NDP (Neutron Depth Profiling)
DE
6 Li(n, a )T
energy loss DE ~ depth x
220 keV 6Li Nb
energy spectrum of particles from (n,a ) reactions
1000
6Li(n, a )T
T
depth surface
500
10B(n, a )7Li
a
0
thermal neutrons
Counts per Channel
depth
channel-energy-depth conversion
x
a, T
detector
x
surface
sample
220 keV 6 Li Nb
0
200
400
600
800
1000
Channel Number
conversion to energy
1.0
1.5
2.0
conversion to depth
1.0
0.8
0.6
0.4
2.5
3.0
x
0.2
0
2.0
1.0
0 m
MeV
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
U
MATS
HAMA
1
T
xT
GET
DEa
.
6 Li
DET
xa
x
TAR
OSTOP
R
T
U
E
N
a
2D coincidence data plot
from Li/B/Li/B/PET
C
D
TOR
ETEC
0
Principal scheme of the
detector-target-detector
coincidence set-up
O
NEUTR
STOP
Coincidence NDP
2
CTOR
DETE
3D coincidence data plot
(detail of the 2D rectangle)
U
MATS
HAMA
x
D Ea ≌ a
x
D ET ≌ T
3D depth profile of Li
determined from the 3D plot
NuPECC Prague 2011
PGAA (Prompt Gamma Activation Analysis) facility
Instrument parameters
Installed at LVR-15 reactor
Neutron flux 3x106 n cm-2s-1
Beam
25x7 mm2
Detector
HPGe (25%)
Sample
liquid/powder in
0.5 ml teflon vial
3.7 counts/s /g 10B
Sensitivity
Det. limits
Usage:
~ 0.1 g (B,Sm,Gd)
~ 50 g (H)
Analytical method PGAA
- concentration of isotopes/elements (B, Cd, Sm, Gd, H, Cl, …)
- optimized for liquid (powder) samples
- biological samples (study of pharmacokinetics of boron compounds in the framework of
BNCT)
- minerals
NuPECC Prague 2011
V.Havránek Laboratory of IBA at NPI
Thank you for your attention !
Dekuji za pozornost !