SPICA Mid-Infrared Camera and Spectrometer

Download Report

Transcript SPICA Mid-Infrared Camera and Spectrometer

SPICA装置検討状況と展望
H. Kataza (ISAS/JAXA)
SPICA検討チーム
1
Scientific Goals

Where are we from ?
How
did the Universe originate and what is it
made of ?

Are we alone ?
What
are the conditions for stellar and planetary
formation and emergence of life?
2
SPICA Scientific objectives
(Mission Definitions)



Resolution of Birth and Evolution of
Galaxies
Transmigration of Dust in the Universe
Thorough Understanding of Planetary
System Formation
3
Requirements

High spatial resolution
→ 3m-class telescope




High sensitivity
→
T<10K
Wavelength coverage 5 to 200mm
Wide Field of View
Unique capabilities
Instruments on board SPICA

MCS : Mid Infrared Camera and Spectrometer



SAFARI : Far Infrared Imaging Fourier Spectrometer



Wide field Imaging spectrometer
wavelength coverage : 34-210mm
SCI : SPICA Coronagraph Instrument




Wide field Imaging, mid and high res. spectroscopy
wavelength coverage : 5-38mm
Coronagraphic imaging and spectroscopy
wavelength coverage : 3.5-27mm
Dedicated instrument for exoplanets study
FPC-S : NIR Focal Plane Camera for Sience


Wide field Imaging and Low Res. Spec. with LVF
wavelength coverage : 0.7-5.2mm
5
Focal Plane Instruments
Wavelength coverage vs Resolving Power
Herschel
l/dl (dv)
MCS/HRS
10000
(30 km s-1)
SPICA
JWST
1000
(300 km s-1)
MCS/MRS
US Inst
100
(3000 km s-1)
SCI
FPC-S
2 mm
SAFARI
MCS/WFC/LRS
20 mm
200 mm
Wavelength
Unique Capability of SPICA/FPIs
λ
SPICA PLM (payload module)
7
FPIA: Focal Plane Instrument Assembly
8
Focal Plane map
9
MCS
10
Unveiling the Role of Environment in the
Early Universe
Wide Field of View 5’x5’ Imager
MCS explore the star formation activities of galaxies along the large-scale structures
in the high-z Universe up to z ~5, taking advantage of wide-field imaging capability
and excellent sensitivity at > 20 micron.
z=1
z=5
JWST/MIRI
MCS/WFC
Yahagi
et al. (2005)
M=6×10^14 Msun, 20Mpc×20Mpc
(co-moving)
11
Life cycle of dust revealed by Infrared
Spectral Features in the MIR
How the materials of various physical phases evolves in the Universe?
SNe as dust budgets in the early universe?
Process of dust nucleation, grain growth and destruction of Dust
Chemical Evolution of the ISM
Mid-R Spec. from 12 to 38m
ionized gas ;[NeII] 12.81mm, [Ne III] 15.56mm, 36.01mm, [NeV] 14.32 mm, [S III] 33.48mm, 18.71mm,
[SIV] 10.51mm, [PIII] 17.89mm, [ArIII] 21.83mm,[ArV] 13.07mm, [OIV] 25.89mm, [SiII] 34.82mm,
[Fe II] 25.99 mm, 35.35mm, 17.94mm, 24.5mm, [FeIII] 22.93mm, 33.04mm
molecular gas;H2 S(0) 28.219mm, S(1) 17.035mm, S(2) 12.279mm, C2H2 (n5=1-0)13.7mm,
HCN (n2=1—0) 14.04mm, 12CO2 14.9mm
12
solid phase molecules and dust grains; GEMS, MgS, FeS, PAHs, crystalline silicates
Formation Mechanism of Gas Giant Planets
Initial Conditions Required for Terrestrial
High-R Spec. at MIR
Planet Formation
Observing the dissipation of gas and their structural evolution in planet-forming
regions
The profiles of molecular emission lines
(CO, H2O, HCN, CO2, C2H2) in the MIR
 useful to understand
how the structure of gas disks evolve
in the course of planet formation
13
MCS : Instrument Overview
5 -- 38mm Camera and Spectrometer
Wide Field Camera


5 arcminutes square FOV x 2, ll 5--25 and 20--38mm
Mid Resolution Spectrograph

IFU by image slicer
 R:(1900--3000)+(1100 --31500)
 ll (12.2--23.0)+(23.0--37.5)mm at once

High Resolution Spectrograph


R : 20,000 ~ 30,000
ll 4--8 mm and 12--18mm
Low Resolution Spectrograph


R ~ 50--100 ll 5-26mm and (20-38 or 25-38(or 48))mm
14
Fore-Optics
Fore-Optics
LRS
15
Design: Optical architecture (full option)
16
Design: Optical architecture (base line)
17
Fore-Optcs
Relay optics with Collimator + Camera
Free-surface mirror
Wide FOV including WFC+(MRS/HRS)+LRS
Compensate telescope aberrations
18
WFC-S
FOV: 5’ x 5’
Diffraction limited image
Zodiacal light limit noise
5 -- 25mm
Si:As 2048x2048 0.”146 fov/pix
19
WFC-L
FOV: 5’ x 5’ x 2 field
Diffraction limited image
Zodiacal light limit noise
20 -- 38mm
Si:Sb 1024x1024 0.”293 fov/pix
20
Medium Resolution Spectrograph (MRS)
MRS-S 12.2 – 23.0 mm
R 1900 – 3000
Si:As 2k x 2k
pixel scale 0”.403
MRS-L 23.0 – 37.5 mm
R 1100 – 1500
Si:Sb 1k x 1k
pixel scale 0”.485
Image Slicer (slit length x width x slices)
MRS-S; 12” x 1”.2 x 5
MRS-L; 12” x 2”.5 x 3
sharing the same FOV,
21
High Resolution Spectrometer (HRS)

Specifications of HRS
Array format
Wavelength coverage
Spectral resolution (R=λ/Δλ)
Pixel scale
Slit length x width
Main disperser

HRS-L
HRS-S
Si:As (2k x 2k)
Si:As (2k x 2k)
12-18 μm
4-8 μm
20,000-30,000
30,000
0.48“/pix
0.288“/pix
6.0” x 1.2”
3.5” x 0.72”
CdTe or CdZnTe immersion grating
ZnSe immersion grating
Optical layout
23
24
Spec.: Low Resolution Spectrograph (LRS)
Wide wavelength coverage
 High sensitivity
 LRS-S

5 -- 26 mm covered by KBr prism
 2’.5 x 1”.40 long slit
 R ~ 50 -- 100


LRS-L
20 -- 50 mm prism CsI
 2’.5 x 2”.66 long slit
 R ~ 50 – 100


S and L shares the same FOV
25
LRS optics and configuration
26
WFC expected performance
For both WFC-S (Si:As 2k x 2x)/WFC-L(Si:Sb 1k x 1k)
Pixel scale:0.36 arcsec
Frame integration:617.3 s Background (Zodiacal light) 261K BB18MJy/str at 25mm.
Total integration time:3600s Aperture photometry within the first diffraction null ring
27
MRS expected performance
Pixel scale, wavelength band width : value in the optical design
Frame integration time: 300s for MIR-S / 600s for MIR-L
High Background : BB T=268.5K normalized to 80 MJy/sr at 25μm
Low Background : BB T=274.0K normalized to 15 MJy/sr
28
HRS expected performance
Pixel scale, wavelength band width : value in the optical design
Fowler-16 sampling – Read noise: 5 electron/pix/read-out
Frame integration time: 300s
High Background : BB T=268.5K normalized to 80 MJy/sr at 25μm
Low Background : BB T=274.0K normalized to 15 MJy/sr
29
MCS: 開発状況まとめ
光学設計 : よい設計解を見つけた
トレランス解析結果も良好
調整方法もシミュレートし、方向性確立
構造設計: 最も複雑なMRS部分でお試し設計
意外にも軽くできそう
光学素子: エマルジョン回折格子の試作成功
ミラーの製造もうまくいきそう
フィルターの開発は継続
検出器:Si:AsはJWSTからの拡張
Si:Sbは低暗電流が実現しそう
熱設計も大丈夫そう
SPICA指向揺らぎ:大きい!Tip-tiltが必要に
30
MCS: Next step
On-going review process
mid-term report
mandatory : WFC , MRS
high rated option : HRS-L
option : HRS-S, LRS
final report within a half year
Focus on the reduced function is necessary!
Scientific operation plan should be developed
31
LRS
LRS R ~ 50--100 ll 5-26mm and 20-38mm
 Full field grism/prism in WFC + Short slit at
the edge of FOV
 Binning MRS

32
Wavelength coverage
5
12.2
23
LRS-S
37.5
LRS-L
MRS
Short Slit : 7arcsec WFC 293 x 300 arcsec
WFC-S grism
5 -- 9
8 --14.5
WFC-L grism
13 -- 23
21 -- 38
MRS
Slitless / Small Slit / Slit and LVF exchange wheel ?
MCS : Collaborations with ASIAA


ASIAA:検出器の供給/サイエンス検討
MCSプロポーザル改定・レガシー観測提案で共同作業
SAFARIとの協力


MCS+SAFARIでSPICAを認めてもらわねば
レガシー観測提案にはSAFARIも含めよう
34
SAFARI
35
36
37
38
39
40
41
42
43
44
SCI
45
Establish MIR “Spectral Atlas” of
exoplanet atmospheres
Spatially resolved, spectroscopic
characterization of planet atmosphere
is a key to understand planet formation.
NIR - MIR spectrum of the planet
atmosphere is rich in various molecular
features, which is difficult to access
from the ground.
(Hanel et al. Sci, 206, 952, 1979)
MIR Spectrum of Jupiter by Voyager
Detailed MIR spectrum of planet
atmosphere we know so far is only from
our solar planets (Jupiter, Saturn, etc).
Coronagraph with
Spectroscopic capabilities
MIR Spectrum of exoplanets
Coronagraphic observation for exoplanets in 2020’s
• JWST and Large groundbased telescopes (e.g. TMT)
– Powerful tools for discovery
of many exopalnets
– Spectroscopic capability is
very limited
(Marois et al. 2008)
• SPICA-SCI
– Unique tool for
charcterization by wide IR
spectroscopy with coro.
Figure by Fukagawa
Kalas et al. (2008)
Thalman al. (2009)
Fine synergy: productive and complementally!
SPICA Coronagraph Instrument (SCI)

Scientific objectives




Instrument Design




Detection and characterization of Jupiterlike planets by direct imaging and
spectroscopy
Study of physical parameters and
atmospheric compositions of exoplanets
Establish “Infrared Spectral Atlas” of
exoplanet atmospheres
Binary pupil mask as a coronagraph
Contrast after PSF subtraction = 106

(Raw contrast = 104)
High-contrast coronagraphic imaging
spectroscopy (R = ~ 20, 200)
Project status

International review is ongoing
Binary Pupil Mask
Target of SCI: Young and matured Jupiter-like planets
Direct detection and spectroscopy
of nearby Jupiter-like planets
1Gyr



Young (<1Gyr), ~ 1MJup planets

Matured (< 5Gyr), a few MJup planets
Survey strategy:



Young stars in young associations (<1 Gyr,
<50pc)
5Gyr
Very nearby, Matured stars (<5Gyr, 10pc)
Over 200 target stars
Planet model atmospheres and the sensitivity of SCI
Figures from M. Fukagawa
Target of SCI:Follow-up Observation of Known Exoplanets





Follow-up observations of exoplanets discovered by ground-based direct imaging
Complementary to NIR ground-based observations
Contrast, sensitivity is enough for most of the targets
IWA is a main limitation
A number of targets will significantly increase in a next decade
HR8799 b
HR8799 c
HR8799 d
HR8799 e
Fomalhaut b
Beta pic b
2M J044144 b
2M1207 b
AB Pic b
UScoCTIO 108
b
1RXS 1609b
(Marois et al. 2008)
Ross 458AB c
GSC 0621400210 b
HIP78530 b
CD-35 2622 b
SR 12AB b
CFBDS 1458 b
GQ Lup b
C3.5µm
C4.7µm
C10µm
C15µm
5.89E-06
9.11E-06
1.44E-04
2.30E-04
1.70E-05
1.63E-05
2.72E-04
3.15E-04
1.70E-05
1.63E-05
2.72E-04
3.15E-04
1.20E-05
1.37E-05
2.28E-04
2.90E-04
1.49E-04
1.01E-04
1.04E-02
4.91E-03
3.15E-02
2.05E-02
1.53E-02
1.25E-02
1.78E-03
1.59E-03
1.74E-02
1.69E-02
8.55E-04
3.13E-05
5.55E-07
1.95E-04
1.21E-05
1.89E-06
4.20E-03
1.37E-04
1.43E-05
3.99E-03
1.28E-04
5.58E-05
1.11E-04
3.13E-06
3.22E-03
6.14E-03
3.83E-04
1.74E-04
4.18E-05
1.18E-06
1.18E-03
2.18E-03
1.61E-03
6.80E-05
3.41E-04
3.19E-06
1.17E-02
1.62E-02
1.39E-02
5.08E-04
3.13E-04
5.21E-06
1.11E-02
1.42E-02
5.63E-02
4.68E-04
Contrast of directly image exoplanets (estimation by T. Matsuo)
Specifications of the instrument
Observation mode
Coronagraph method
Guaranteed contrast @PSF*
Spectral Resolution in
Inner - Outer working angle
FoV
Detector and channel
Wavelength coverage
Coronagraphic Imaging Spectroscopy
Binary pupil mask
Raw contrast > 10^4
After PSF subtraction >10^6
~ 5, 20, 200
3.3 – 12 λ/D (mask1)
1.7 – 4.5 λ/D (mask2)
1’ x 1’
Short channel: 2k x 2k InSb (λ<5μm)
Long channel: 2k x 2k Si:As (λ>5μm)
3.5-27mm (Coronagraph Imaging/spectroscopy)
1-27mm (Non- coronagraph Imaging/spectroscopy)
High-contrast
Region
Binary Pupil Mask
Star PSF
Current Development Status

Basic optical design was finished

Simplification for a robust design



Deformable mirror is omitted

Focal-plane mask without moving mechanism
Key technology development

Binary pupil mask

Cryogenic testbed

Diamond turning metallic mirror
SCI simulation software
Simulation Examples



Contrast enhancement by a PSF subtraction method, under the existence of
telescope pointing error = 0.06”
Contrast after PSF subtraction ~ 106 (Raw contrast=104)
Spectroscopy + PSF subtraction
Target: K5V, PSF reference: A0V star
5um
Contrast = 5.5E-7
SCI: Sumarry
SPICA Coronagraph Instrument (SCI) is a high-contras imaging
spectrometer for SPICA


Scientific Objectives


Detection and Characterization of Jupiter-like planets (<5 Gyr) by direct
imaging and spectroscopy

Study of physical parameters and atmospheric compositions of exoplanets

Establish MIR “Spectral Atlas” of exoplanet atmospheres
Development Status

Basic optical design was done

Simplification for a robust design (no DM, focal plane mask)


Key technologies development is ongoing (Free-standing mask, cryogenic
optical testbed, mirrors etc)
SCI simulation software