GilbertVLSI2013 - Robust Low Power VLSI

Download Report

Transcript GilbertVLSI2013 - Robust Low Power VLSI

CBRAM Macro Embedded in a
Body Sensor Node
®
Nad Gilbert1, Yanqing Zhang2,
John Dinh1, Benton Calhoun2,and Shane
Hollmer1
1
Adesto Technologies, Sunnyvale, CA
2 University of Virginia, Charlottesville, VA
Symposia on VLSI Technology and Circuits
Outline
•
•
•
•
•
•
•
•
•
•
Introduction - Ultra Low Power (ULP)
CBRAM technology
CBRAM Macro Architecture
Energy Monitor
Sensing Circuit and Energy measurement Results
Write Circuit and Energy measurement Results
Body Sensor Node (BSN) concept and results
Die Photo
Comparison of macro to Prior work
Conclusion
Slide 1
Introduction
Typical Low Power Sensor
Non-volatile
Serial Flash
The Missing
ULP component
Transceiver
(Demonstrated
in ULP system)
Image courtesy of
University of Washington
TI SoC Microcontroller, 12
bit ADC,
temperature
sensor
(Demonstrated in
ULP system),
128KB
embedded
FLASH
(The Missing
ULP component)
Slide 2
CBRAM Technology – Introduction
< 20nm dimensions
< 0.6V Operation
Multi Level Cell
< 1mA Write
< 0.6V Write
Conductive Bridging RAM (CBRAM) is
a subset of Resistive RAM
that is highly
scalable
low power
high performance
and can be integrated at
Back-End-of-Line in a standard
CMOS processes.
1Transistor – 1 Resistor Cell (1T1R)
DRAM Cost Structure
<50ns Write
Large Read Signal
Verify During Write
Slide 3
CBRAM Technology – Cross section
Data is stored by modulating the resistance of the dielectric layer.
Anode
Cathode
TEM
Transistor
Slide 4
CBRAM Technology - Operation
Voltage (V)
Program at 600mV and 400nA
1T1R Cell
0.8
Anode
0.6
Tpg=14µs
0.4
Cathode
Cathode
0.2
Anode
400nA
0
0
5
10
15
20
25
30
Voltage (V)
Erase at 600mV and 200nA
1.2
Cathode
1.2V
Ter=2µs
Anode
1
0V
200nA
Cathode
0.8
0.6
0.4
84
86
88
90
92
Anode
Time (µs)
Slide 5
CBRAM Macro Architecture
Din
Write ctrl
x8
Write
drivers
Lvl
Conv
VWL
x8
Array:
32 cols
256 rows
x8
8:1
8:1
RD
BLAN
BLS
WL
•Dual bit line
•Maximum device isolation
•Dual supply domains
• VDD (read) VCC (write)
•Maximum usage of VCC
•Minimized series resistance
•Variable Word Line voltage
RD
4:1
Slide 6
Voltage Across Cell
ERASE
0V
0.6 V
HALF SEL BL
0V
0.6 V
0.6 V 0.4V
PROGRAM
0.6 V
READ
0.4 V
0.4V
0V
0V
~0.2V
0V
Slide 7
On Chip Energy Monitor
VCCANALOG
VREF
Id(M1)=ILOAD
M1
VMEAS •Dynamic
Current
monitor
IBIAS
VLOAD
ILOAD
IBIAS
Energy monitor for each supply: VCC, VDD, and VWL
Slide 8
Sensing Circuit
Pull Up
Programmable Pull up
Strength
VDD as low as 0.3V
Read
Strobe
Data Out
SN
Read
Strobe
Source follower
Voltage limit
8:1
Read
Strobe
8:1
BLAN
BLS
WL
Slide 9
Measured results of Sense circuit
Energy Vs. Delay of Reading 1 Byte
10
Strength=0
0.39 pJ/B
Delay (us)
Strength=4
1
Strength=7
0.1
0.01
0.1
1
Energy (pJ)
10
100
Slide 10
Write Circuit
VCC as low as 0.6V
VCC
VCC
Data Dependent
Program
DinPROG
1
Minimized Series
resistance write path
drivers
1
OFF 1
VWL
Data Dependent
Erase
DinERASE
WL
BLAN
BLS
Complete Isolation when not
selected
Slide 11
Measured Results of Program Operation
Measured Program from CBRAM Array
VMEAS (V), α IPROG
0.5
TPROG=
10us
200
160
0.4
120
80
0.3
40
leakage
Current
0.2
Meas. Tot. E (pJ)
VCC=0.6V, VWL=0.6V, VDD=0.4V
0
0
20
40
60
80
100
Time (μs)
Slide 12
Program Energy vs. Supply
Sim. Energy/bit to PROG time @ const
Ron
6
Energy Minima
at 1V
Energy (pJ)
5
4
Ron=62.1k
Ron=300k
3
Energy Minima
at 0.7V
2
1
0
0.4
0.6
0.8
1
1.2
1.4
1.6
VCC (V)
Slide 13
Measured Results of Write Operation
Measured Erase from CBRAM Array
VCC=0.6V, VWL=1V, VDD=0.4V
0.5
VMEAS (V), α
IERASE
10
TERASE=23us
0.4
8
leakage
Current
6
0.3
4
Meas. Tot. E (pJ)
12
2
0.2
0
0
10
20
30
40
50
60
70
80
Time (μs)
Slide 14
Erase Energy vs. Supply
Sim. Energy/bit to Erase time @ const
Ron
80
70
60
High Ron, Low
energy
Energy
(pJ)
50
Ron=62.5k
Ron=602k
40
30
20
10
0
0.4
0.6
0.8
1
1.2
1.4
VCC (V)
Slide 15
ClkConfig
EnConfig
ConfigBits
IMEM
CONFIG.
SCAN
CHAIN
SystemClk
ADC[7:0]
ClkScan
EnScan
ScanBits
IMEM
DEBUG
SCAN
CHAIN
Accel. Clks
CBRAM
IMEM
Bus1[7:0]
Bus2[7:0]
Body Sensor Node (BSN)
CBRAM
DMEM
DIGITAL
POWER
MANAGER
CLOCK
GEN.
SCAN
CHAIN OUT
DMEM
CONFIG.
SCAN
CHAIN
DMA
GPP RISC
PROCESSOR
RR
ACCEL.
AFIB
ACCEL.
FIR
ACCEL.
ENV DET
ACCEL.
ScanOutBits
CBRAM was integrated with the Digital Platform only
Slide 16
BSN Results
Enable[5:0]
6’hxx
6’h3E
6’hxx
6’h3E
ClkGt[6:0]
7’hxx
7’h01
7’hxx
7’h01
Rst[6:0]
7’hxx
7’h01
7’hxx
7’h01
Bus1_connect[12:0]
13’hxxxx
13’h1F9F
13’hxxxx
13’h1F9F
Bus2_connect[12:0]
13’hxxxx
13’h17FE
13’hxxxx
13’h17FE
8’hxx
8’h80
RISC_out[7:0]
8’hxx
Supply Status/Time Off/…
8’h80
On/10:45 AM
Off/…
On/5:55 PM
Measured scan chain outputs showing
correct operation of RISC processor from
CBRAM, after power-down all day
Slide 17
BSN (digital) and CBRAM Die Photograph
Timing Blocks And Config.
Scan Chains
64kb
CBRAM
DMEM
64kb
CBRAM
IMEM
DPM
Prog. FIR
DMA
CLK
GEN
Scan
Out
ENV
DET
RISC
μProc
RR+
AFib
Slide 18
Comparison of Program Energy
Program Energy (pJ)
[3]
[6]
1000
[4]
100
[5]
10
This work
1
0
1
2
3
4
5
6
7
8
9
10
11
Write Voltage (V)
[3] 0.5V 4Mb embedded ReRAM
[4] Flash with self-aligned split-gate cell
[5] STT-MRAM
[6] 4Mb embedded phase-change memory
Slide 19
Comparison of Technology
Metric
[3]
[4]
[5]
[6]
CBRAM
ReRAM
FG
Flash
MRAM
PCM
CMOS Compatibility
Yes
Yes
No
Yes
No
Read Core Voltage (V)
0.35
0.32
0.5
1.2
1.2
Write Core Voltage (V)
0.6
2.0
10
3.3
2.8
Program Energy/bit
1 pJ
2 nJ
100 pJ
10 pJ
250 pJ
Read Energy/bit
50 fJ
75 fJ
500 fJ
100 fJ
500 fJ
No
Yes
Yes
Yes
Yes
Technology
Charge pumps needed
for <1 V SoC
This
work
Slide 20
Conclusion
• Device
– 2 CBRAM macros embedded in BSN
• Technology
– 0.13 mm standard CMOS
• Array size
– 64 kb
• Operating voltage
– Integrated in BSN 0.5V
– CBRAM macro 0.4 V read 0.6 V write
• Operating Frequency
– 200 kHz
• Write energy
– 8 pJ
Slide 21
Acknowledgements
• Ralph Williams and Derric Lewis
– Digital test interface of the CBRAM macro
• Altis Semiconductor
– Chip manufacturing
• DARPA
– Partial funding through an SBIR award
Slide 22