Known Proton Emitters

Download Report

Transcript Known Proton Emitters

Proton emission from deformed rare earth nuclei

Robert Page

Simple model for spherical proton emitters

Proton decay of 160 Re

Q p  E proton   A A  1     S p

Q p = 1271 keV

t 1 / 2  e AREA

Proton emission as a spectroscopic tool

h 11/2

160 Re Half-life (ms) E p (keV) 1263

d 3/2

0.24

h 11/2

Expt 480 0.67

d 3/2

S  t 1 / 2 ( calc ) t 1 / 2 ( expt )

Deformed proton emitters 135 Tb P.J. Woods et al., PRC69 (2004) 051302

Known Proton Emitters B. Blank & M.J.G. Borge, Progress in Particle and Nuclear Physics 60 (2008) 403

Known Proton Emitters Why are there so few known proton emitters in this region?

Selectivity Yield B. Blank & M.J.G. Borge, Progress in Particle and Nuclear Physics 60 (2008) 403

Implantation – proton – alpha correlation

Decay Particle Energy (MeV)

The proton emitter 159 Re t 1/2 = 21 m s

Decay Particle Energy (MeV)

D.T. Joss et al., Physics Letters B641 (2006) 34

Implantation – proton correlations 50 Cr + 92 Mo → 135 Tb + p6n Argonne FMA A = 135 only 60 m m thick DSSD P.J. Woods et al., PRC69 (2004) 051302

Beta-decay half-lives Moller, Nix & Kratz, Atomic Data & Nuclear Data Tables 66 (1997) 131

Proton-decay half-lives

Fusion-evaporation reactions Compound nuclei

Fusion-evaporation p

x

n reactions ~ 3 nb ~ 30 m b

(Super-)FRS  A & Z separation AIDA Isomer g decays or known p for unique A & Z identification Selectivity

Predicted Super FRS Yields @ 10 12 /s Yield Neutron number N  = 3.6 / hour = 0.6 / week

Predicted Super FRS Yields @ 10 12 /s Yield = 3.6 / hour = 0.6 / week Neutron number N 

Some physics opportunities

• • • • •

New proton emitters Weak proton-decay branches Proton-decay fine structure Precision measurements Beta-delayed gamma spectroscopy

Outstanding questions

• • •

Background from

b

and

b

p decays (1 mm thick DSSDs cf. 60

m

m) Identify best physics cases Choose best primary beam Your input is welcome...

Robert Page