Transcript Powerpoint
Aerosol information from the UV-visible spectrometer GOME-2 Piet Stammes, KNMI, De Bilt, The Netherlands 7 November 2012 1 Contents • • • • • • Importance of aerosols Aerosol microphysics Spectral absorption by aerosols GOME-2 Absorbing Aerosol Index First results on Aerosol Height Acknowledgements to: Martin de Graaf, Gijs Tilstra, Ping Wang, Olaf Tuinder (KNMI) Eyk Boesche (FUB) Marloes Penning de Vries (MPIC) 2 Absorbing Aerosol Index map from SCIAMACHY Siberian forest fires in July 2006 Canadian and Alaskan forest fires June-July 2004 Taklamakan desert Californian forest fires Libian desert Thar desert Rice straw burning Desert dust Sahara Bodélé Saudi Arabian lowlands Sahel biomass burning and desert dust storms Indonesian forest fires Amazonian rainforest biomass burning biomass burning smoke biomass burning smoke Smoke from forest fires Smoke and Dust weak events strong events 3 more data and information can be found at www.temis.nl Why are aerosols important? Air quality / Health Climate ©IPCC 2007 Air traffic safety Visibility 4 Many aerosol types: chemical compositions, sizes and shapes 5 http://alg.umbc.edu/ Dust aerosols Sahara dust event Size distribution ©nasa earthobservatory - Fine mode aerosols: around 0.1 micron Absorbing aerosols: • Desert dust • Smoke • Volcanic ash - Coarse mode aerosols: around 1 micron 6 Absorption by smoke above clouds Observation by SCIAMACHY of absorption spectrum of smoke aerosols. This absorption leads to heating of the troposphere up to 125 W/m2. De Graaf et al., JGR, 2012 7 GOME-2 on Metop since 2006 • • • • UV-visible-near-IR spectrometer 4 spectral channels, covering 240 - 790 nm 0.2-0.4 nm resolution Polarization Monitoring Devices (PMDs) at 15 bands • Main products: ozone, NO2, SO2, minor gases • Additional products: aerosols, clouds, surface albedo http://www.esa.int/esaLP/SEMTTEG23IE_LPmetop_0.html 8 Pixel size of GOME-2 w.r.t. other sensors • GOME(-1) 40 km ERS-2 320 km • GOME-2 40 km Metop-A+B 80 km • SCIAMACHY Envisat 10 km 30 km 60 km • OMI EOS-Aura 40 km GOME-2 PMD 13 km 24 km Along track 9 Absorbing Aerosol Index (AAI) Definition: residue meas Rayleigh R340 R340 10 10 log r 100 log R R 380 380 where the surface albedo A for the Rayleigh atmosphere simulations is such that: meas Rayleigh R380 R380 ( A) A is assumed to be wavelength independent: A340 = A380 The residue represents the observed 340/380 nm colour as compared to the pure Rayleigh colour (OMI: 354/388 nm) AAI is the positive part of the residue 10 Reflectance at TOA with absorbing aerosols Doubling-Adding KNMI Radiative Transfer Model Solar zenith angle = 30° Viewing zenith angle = 0° Surface albedo = 5% Absorbing aerosols: altitude = 3-4 km optical thickness = 2 single scattering albedo 0= 0.75 11 Reflectance at TOA with absorbing aerosols and matched Rayleigh reflectance As To match the reflectance in the absorbing aerosol atmosphere at 380 nm , the surface albedo is decreased in the Rayleigh atmosphere: Match at reference wavelength Rayleigh atmosphere Surface albedo = 0.6% 12 Reflectance at TOA with absorbing aerosols and matched Rayleigh reflectance As The curves don’t match at 340 nm: Absorbing aerosols create a positive residue. Residue 13 Generally: • no clouds, no aerosols • clouds, no absorbing aerosols • absorbing aerosols :r=0 :r<0 :r>0 AAI: r > 0 Pros and Cons: + AAI can detect UV absorbing aerosols: volcanic ash, desert dust and smoke. + AAI works in cloudy scenes. + AAI works over ocean and land. - AAI is an index: it depends on AOT (), SSA () and altitude (). - AAI is very sensitive to absolute calibration. 14 Simulations of AAI for biomass burning aerosols Clear-sky case Nadir view Aerosols at 4-5 km Clouds at 1-2 km Cloudy case AAI increases with AOT AAI decreases with SZA DAK RTM simulations Wang et al., ACP, 2012 15 Daily AAI map of GOME-2 spectral channels http://www.temis.nl/airpollution/absaai/ 16 Daily AAI map from GOME-2 PMDs PMDs have 8x higher spatial resolution than the spectral channels http://www.temis.nl/o3msaf/vaac_pmd/ 17 Information for the VAAC (volcanic ash advisory centre) Eyjafjolleruption of April-May 2010 http://www.temis.nl/o3msaf/vaac_pmd/ 18 Smoke over Borneo from AAI, 1995 -2010 1997/1998 El Niño: drought caused many forest fires; 120.000 km2 forest burned. Satellite data sources: GOME, SCIAMACHY, GOME-2 Figure: L.G. Tilstra, KNMI 19 UV residue has two parts: Absorbing Index & Scattering Index Scattering aerosols and clouds Absorbing aerosols GOME-2 Aerosol Indices for July, 2011, cloud fraction < 0.2. Work of Marloes Penning de Vries (MPIC, Mainz). Penning de Vries et al., ACP, 2012 Penning de Vries, Visiting Scientist report of O3MSAF, 2012 20 Effect of instrument degradation on the AAI The global mean residue, the mean of all residues on a day between 60°N and 60°S, is about constant, showing only a very mild seasonal variation. GOME-2 (for individual scan mirror positions) Instrument degradation has a very large impact on the residue/AAI: 2.3 % reflectance change ~ 1 AAI point. Tilstra et al. (JGR, 2012) developed an in-flight degradation correction method.21 Aerosol Height retrieval Approach: use cloud algorithm FRESCO for aerosol height - FRESCO algorithm: fit of O2 A-band at 760 nm using a Lambertian reflector as cloud model. - FRESCO v6 has two retrieval modes for 2 retrieved quantities: Normal: Effective cloud fraction (cloud albedo 0.8) and Cloud height Alternative: Scene albedo (cloud fraction 1) and Scene height Wang et al., ACP, 2008 22 FRESCO retrievals using simulated O2 A band spectra for dust aerosols Aerosol layer Cloud layer Clear-sky Cloudy Wang et al., ACP, 2012 23 Puyehue volcano (Chile), 20110606, Westerly Box Wang et al., ACP, 2012 24 Puyehue volcano (Chile), 20110606, Easterly Box Wang et al., ACP, 2012 25 Conclusions • Absorbing aerosols, like desert dust, smoke, and volcanic ash can be detected by GOME-2 • GOME-2 provides near-real-time monitoring information on these aerosols, with the products: - AAI for absorbing aerosols - SCI for scattering aerosols (if cloud mask is used) - FRESCO for aerosol height. 26 Links • O3MSAF GOME-2 data products: http://o3msaf.fmi.fi • TEMIS GOME-2 data products: http://www.temis.nl • GOME-2 and Metop: http://www.eumetsat.int • GOME-2 L0 data quality information: http://gome.eumetsat.int 27 References on GOME(-2) aerosol retrievals M. de Graaf, P. Stammes, O. Torres, and R.B.A. Koelemeijer, Absorbing Aerosol Index: Sensitivity analysis, application to GOME and comparison with TOMS, J. Geophys. Res. 110, D010201, doi:10.1029/2004JD005178, 2005. M. de Graaf, L.G. Tilstra, P. Wang and P. Stammes, Retrieval of the aerosol direct radiative effect over clouds from space-borne spectrometry, J. Geophys. Res., 117, D07207, doi: 10.1029/2011JD017160, 2012 M. de Graaf and P. Stammes and E.A.A. Aben, Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY, J. Geophys. Res. 112, D02206, doi: 10.1029/2006JD007249, 2007. M. Penning de Vries, Beirle, S., and Wagner, T.: UV Aerosol Indices from SCIAMACHY: introducing the SCattering Index (SCI), Atmos. Chem. Phys., 9, 9555-9567, doi:10.5194/acp-9-9555-2009, 2009 M. Penning de Vries, and Wagner, T.: Modelled and measured effects of clouds on UV Aerosol Indices on a local, regional, and global scale, Atmos. Chem. Phys., 11, 12715-12735, doi:10.5194/acp-11-12715-2011, 2011. L.G. Tilstra, M. de Graaf, I. Aben and P. Stammes, In-flight degradation correction of SCIAMACHY UV reflectances and Absorbing Aerosol Index, J. Geophys. Res., 117, D06209, doi: 10.1029/2011JD016957, 2012. L.G. Tilstra, M. de Graaf, O.N.E. Tuinder, R.J. van der A, and P. Stammes, Studying trends in aerosol presence using the Absorbing Aerosol Index derived from GOME-1, SCIAMACHY, and GOME-2, Proceedings of the 2011 EUMETSAT Meteorological Satellite Conference, EUMETSAT P.59, ISBN 978-92-9110-093-4, 2011. L.G. Tilstra, O.N.E. Tuinder, and P. Stammes, A new method for in-flight degradation correction of GOME-2 Earth reflectance measurements, with application to the Absorbing Aerosol Index, Proceedings of the 2012 EUMETSAT Meteorological Satellite Conference, EUMETSAT P.??, ISBN ??????????, 2012. P. Wang, P. Stammes, R. van der A, G. Pinardi, M. van Roozendael, FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals, Atmospheric Chemistry and Physics, 8, 6565-6576, 2008 P. Wang, O.N.E. Tuinder, L.G. Tilstra, M. de Graaf, and P. Stammes, Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events, Atm. Chem. Phys., 12, doi: 10.5194/acp-12-9057-2012, 2012. 28 Back-up slides 29 AAI products from GOME, SCIAMACHY, GOME-2, and OMI Wavelength pair (nm) Equator crossing time Pixel size (km) Days needed for global coverage Platform / Operation period GOME–1 340 / 380 10 : 30 LT 320 × 40 3 ERS-2 (1995 – 2003*) SCIAMACHY 340 / 380 10 : 00 LT 60 × 30 6 Envisat (2002 – 2012) GOME–2 340 / 380 09 : 30 LT 80 × 40 1.5 MetOp-A (2006 – present) OMI 354 / 388 13 : 30 LT 13 × 24 1 Aura (2004 – present) *GOME-1: loss of global coverage on 22 June 2003 ; instrument retired on 4 July 2011 30 FRESCO retrievals using simulated O2 A band spectra for biomass burning aerosols Aerosol layer Cloud layer Clear-sky Cloudy Wang et al., ACP, 2012 31 Australian Wildfires Feb 7th – Feb 12th 2009 Figure: O. Tuinder, KNMI