Atmospheric boundary layer and biomass burning aerosol

Download Report

Transcript Atmospheric boundary layer and biomass burning aerosol

Atmospheric boundary layer and
biomass burning aerosol
measurement and characterization
using lidar and sunphotometer
over Buenos Aires.
Lidia Ana Otero
CEILAP (CITEDEF-CONICET)
ARGENTINA
April 2011
Presentation Plan
1. Lidar Timeline (2003-2011)
2. Multiwavelength Lidar
3. AERONET Network
4. Lidar Measurements
5. Perspectives
2009
2008
2007
2006
2005
2004
2003
2009
Six Wavelength
Coaxial LIDAR System
Acquisition System
COAXIAL mount to
have a SAME
Overlap Function for
all Channels
Acquisition System
Six Wavelength Coaxial
LIDAR System – Actual Design
Aerosol
Extinction and Backscatter
Elastic
355 nm, 532 nm, 1064 nm
Vibrational Raman
387nm, 408nm, 607nm
Water vapour
Vibrational Raman
408 nm
Transmitter
Nd:YAG 100 mJ @ 1064 nm, 10Hz
Receiver
49 cm F/2 Newtonian Telescope
Acquisition System
Licel analog and
photoncounting
Temporal resolution: 10 s
Spatial resolution: 7.5 m
New Polychromator
Rayleigh 1064, 532 and 355 nm
Raman 607, 387 and 408 nm
From Newtonian Telescope
PMT
355 nm
14
13
11
10
9
PMT
387 nm
16
PMT
408 nm
15
12
UV
1
3
2
5
6
8
PMT
532 nm
Vis + IR
4
7
APD
1064 nm
PMT
607 nm
Multiwavelength Lidar System
♣ Study the height-dependent aerosol optical properties at
different wavelengths, the boundary layer evolution and
the water vapor vertical distribution.
♣ Aerosol extinction coefficient using nitrogen Raman
channels (387 nm and 607 nm).
♣ Total to molecular backscatter and backscatter to
extinction ratio.
♣ Water vapor mixing ratio profile using the Raman water
vapor (408 nm) and nitrogen channels (387 nm).
AERONET Network
AERONET Network
Geophysical Interest
•Biomass Burning Events
•Water vapor Transport
•Aerosol Climatology
•Microphysical aerosol property
Dominant air mass
Buenos Aires: Synoptic Advection
Córdoba: Continental (not actived)
San Juan: Continental
Trelew: Maritime
Río Gallegos: Maritime
Puerto Madryn: Martime (not actived)
Antártida (not actived)
Stations on the world: 650
Sun-photometer at CEILAP
Buenos Aires
Measurement types:
- Direct Solar Measurements
- Almucantar (*)
- Principal Plane (*)
Water vapor (**)
Wavelengths:
1 =1020 nm
wv= 940 nm
2 = 870 nm
3 = 670 nm
4 = 500 nm
5 = 440 nm
6 = 380 nm
7 = 340 nm
(*)
(**)
(*)
(*)
(*)
Three levels of data are available: Level 1.0 (unscreened), Level
1.5 (cloud screened), and Level 2.0 (cloud-screened and qualityassured).
Elastic Lidar Case Study #1: March 18, 2004
Normalized Aerosol Backscatter
« Perfect Match with SunPhotometer »
AOT532 Comparison
Lidar vs. Sunphotometer
Optical Thickness
AERONET
Lidar
Local Time [h]
11
L. Otero, P. Ristori, B. Holben, E. Quel, “MEDICIÓN DEL ESPESOR ÓPTICO DE AEROSOLES Y DE CIRRUS
MEDIANTE UN SISTEMA LIDAR Y UN FOTÓMETRO SOLAR EN BUENOS AIRES,” IX Congreso Argentino de
Meteorología (CONGREMET IX), 3 -7 October 2005 Buenos Aires, Argentina.
Elastic Lidar Case Study #2: September 20, 2004
AQUA 18 SEP 04
TOMS 20 SEP 04
12
Raman Lidar Case Study: January 12, 2008
Normalized Aerosol Backscatter (1064 nm)
Total to Molecular Backscatter Ratio (532 nm)
Water Vapor Mixing Ratio
Lidar - Radiosonde Comparison
Total to Molecular Backscatter Ratio (355 nm)
Backscatter Ångström Coefficient
R , z  
 aer ( , z )   mol ( , z )
 mol ( , z )
  R532 ( , z )  1  355 4 
ln 
  R355 ( , z )  1  532  

A, z   
13
355


ln 

 532 
“Water Vapor And Atmospheric Boundary Layer Temporal Evolution In Buenos Aires, Argentina During The Night January 12,
2008”, Proceeding 24th ILRC (International Laser Radar Conference), Boulder, Colorado.
Coaxial Lidar Case Study #1: August 24, 2009
« New Perspectives »
August 29th, 2009
AQUA
Corrected Maximum Optical
Depth over Land at 470 nm
(MODIS/AQUA)
20AUG09
24AUG09
29AUG09
Aerosol Index from OMI
21AUG09
21AUG09
23AUG09
24AUG09
25AUG09
29AUG09
30AUG09
25AUG09
30AUG09
Wind Shear in m/s NOAA/ESRL
HYSPLIT (NOAA)
Coaxial Lidar Case Study #2: September, 2010
September 8th, 2010
AQUA
HYSPLIT MODEL (NOAA)
Backward trajectories
Wind Shear in m/s
NOAA/ESRL
Aeronet Aerosol Optical Depth
CEILAP – Buenos Aires
Perspectives
• Implementation of tropospheric aerosol lidar at Rio
Gallegos, los Andes Mountains and the Northern Region
of Agentina.
• Statistical analysis of the origin and fate of measured
aerosols using backward and forward trajectories in
collaboration with UMI.
• Aerosol forward trajectories calculations to study the
influence over the Atlantic ocean.
• Study of radiative forcing of aerosols: validation of
simulations by regional climate models.