DirDrilling2
Download
Report
Transcript DirDrilling2
Petroleum Engineering - 406
LESSON 19
Survey Calculation Methods
LESSON 11
Survey Calculation Methods
Radius of Curvature
Balanced Tangential
Minimum Curvature
– Kicking Off from Vertical
– Controlling Hole Angle (Inclination)
Homework
READ:
Chapter 8 “Applied Drilling Engineering”,
( first 20 pages)
Radius of Curvature Method
Assumption: The wellbore follows a
smooth, spherical arc between survey
points and passes through the measured
angles at both ends.
(tangent to I and A at both points
1 and 2).
Known: Location of point 1, MD12 and
angles I1, A1, I2 and A2
Radius of Curvature Method
Length of arc of circle, L = Rrad
A1
1
MD = R1 (I2-I1) (rad)
I2 -I1
North
R1
I1
A1
I2
East
2
North
East
Radius of Curvature - Vertical Section
In the vertical section, MD = R1(I2-I1)rad
π
MD = R1 (
) (I2-I1)deg
180
R1=
180
( π
)(
I1
MD
)
I2 I2
ΔVert R1 sin I2 R1 sin I1
180
π
R1
Vert
ΔMD
sin I2 sin I1
I2 I1
I2-I1
MD
I2
Radius of Curvature:
Vertical Section
I1 I2
Δ Horiz R1 cos I1 R1 cos I2
Δ Horiz R1 cos I1 cos I2
180
π
ΔMD
(cos I1 cos I2 )
I2 I1
R1
R1
MD
I2
Horiz
Radius of Curvature:
Horizontal Section
N
A2
L2 = R2 (A2 - A1)RAD
2
A1
1
L2
North
East
R2
A2
180
so, R2
π
A2-A1
A1
O
L2
A 2 A1 DEG
East = R2 cos A1
- R2 cos A2
= R2 (cos A1 - cos A2)
Radius of Curvature Method
East = R2 (cos A1 - cos A2)
180
R2
π
East =
L2
L2
A 2 A1
180
π
ΔMD
(cos I1 cos I2 )
I2 I1
MD cos I1 cos I2 cos A 1 cos A 2 180
I2 I1 A 2 A1
π
2
Radius of Curvature Method
North = R2 (sin A2 - sin A1)
180
R2
π
North =
L2
A 2 A1
180
L2
π
ΔMD
(cos I1 cos I2 )
I2 I1
MD cos I1 cos I2 sin A 2 sin A 1
I2 I1 A 2 A1
180
π
2
Radius of Curvature - Equations
MD cos(I1 ) cos(I2 ) sin( A 2 ) sin( A1 )
North
(I2 I1 ) ( A 2 A1 )
MD cos(I1 ) cos(I2 ) cos( A1 ) cos( A 2 )
East
(I2 I1 ) ( A 2 A1 )
MD sin(I2 ) sin(I1 )
Vert
(I2 I1 )
With all angles in radians!
Angles in Radians
If I1 = I2, then:
sin A 2 sin A1
North = MD sin I1
A 2 A1
East = MD sin
cos A1 cos A 2
I1
A 2 A1
Vert = MD cos I1
Angles in Radians
If A1 = A2, then:
North = MD cos A1
cos I1 cos I2
I2 I1
East = MD sin A1
cos I1 cos I2
I2 I1
sin
I
sin
I
2
1
Vert = MD
I
I
2
1
Radius of Curvature - Special Case
If I1 = I2 and A1 = A2
North = MD sin I1 cos A1,
East = MD sin I1 sin A1
Vert = MD cos I1
Balanced Tangential Method
MD
MD
Vert
cos I1
cos I2
2
2
1
I1
MD
2
I2
0
MD
MD
Horiz
sinI1
sinI2
2
2
MD
2
I2
Vertical Projection
I2
Balanced Tangential Method
Horiz. 2
N
A1
E
North Horiz.1cos A1 Horiz.2 cos A 2
MD
sinI1 cos A1, sinI2 cos A 2
2
East Horiz.1sin A1 Horiz.2 sin A 2
MD
sinI1 sin A1, sinI2 sin A 2
A2
2
Horiz.1
Horizontal Projection
Balanced Tangential Method - Equations
MD
North
sin I1 cos A 1 sin I2 cos A 2
2
MD
East
sin I1 sin A 1 sin I2 sin A 2
2
MD
Vert
cos I2 cos I1
2
Minimum Curvature Method
This method assumes that the wellbore
follows the smoothest possible circular arc
from Point 1 to Point 2.
This is essentially the Balanced Tangential
Method, with each result multiplied by a
ratio factor (RF) as follows:
Minimum Curvature Method - Equations
MD
North
sin I1 cos A 1 sin I2 cos A 2 RF
2
MD
East
sin I1 sin A 1 sin I2 sin A 2 RF
2
MD
Vert
cos I2 cos I1 RF
2
Minimum Curvature Method
PS SR
RF
Arc PQR
DL
DL
r tan
r tan
2
2
r DL
DL = b
O
r
P
r
Q
2
DL
RF
tan
DL
2
DL
2
S
DL
R
The Dogleg angle, DL, is calculated as follows :
cos (DL) cos (I2 I1 ) sin I1 sin I2 1 cos ( A 2 A1 )
Fig 8.22
b
A curve
representing a
wellbore between
Survey Stations A1
and A2.
b b(A, I)
Tangential Method
North MD sin(I2 ) cos( A 2 )
East MD sin(I2 ) sin( A 2 )
Vert MD cos(I2 )
Balanced Tangential Method
MD
sin(I1 ) cos( A1 ) sin(I2 ) cos( A2 )
North
2
MD
sin(I1 ) sin( A1 ) sin(I2 ) sin( A 2 )
East
2
MD
cos(I2 ) cos(I1 )
Vert
2
Average Angle Method
I1 I2
North MD sin
2
I1 I2
East MD sin
2
A1 A 2
cos
2
A1 A 2
sin
2
I1 I2
Vert MD cos
2
Radius of Curvature Method
MD cos(I1 ) cos(I2 ) sin( A 2 ) sin( A1 )
North
(I2 I1 ) ( A 2 A1 )
MD cos(I1 ) cos(I2 ) cos( A1 ) cos( A 2 )
East
(I2 I1 ) ( A 2 A1 )
MD sin(I2 ) sin(I1 )
Vert
(I2 I1 )
Minimum Curvature Method
MD
sin(I1 ) cos( A1 ) sin(I2 ) cos( A 2 ) RF
North
2
MD
sin(I1 ) sin( A1 ) sin(I2 ) sin( A 2 ) RF
East
2
Vert
MD
cos(I1 ) cos(I2 ) RF
2
Mercury Method
North
MD STL
sin(I1 ) cos( A1 ) sin(I2 ) cos( A 2 ) STL sin(I2 ) cos( A 2 )
2
East
MD STL
sin(I1 ) sin( A1 ) sin(I2 ) sin( A 2 ) STL sin(I2 ) sin( A 2 )
2
Vert
MD STL
cos(I2 ) cos(I1 ) STL cos(I2 )
2