Transcript pK a ~ 3
Polyprotic acids Since pKa values are generally wellseparated, only 1 or 2 species will be present at significant concentration H3PO4 + H2O = H2PO4- + H3O+ pKa1 = 2.1 H2PO4- + H2O = HPO42- + H3O+ pKa1 = 7.4 HPO42- + H2O = PO43- + H3O+ pKa1 = 12.7 1 Common acids HNO3 NO3 Nitric acid Nitrate HNO2 NO2 Nitrous acid Nitrite H3PO4 PO43 Phosphoric acid Phosphate H3PO3 HClO4 ClO4 Perchloric acid Perchlorate HClO3 ClO3 Chloric acid Chlorate HClO2 ClO2 HPO32 Chlorous acid Chlorite Phosphorous acid Phosphite HOCl OCl H2SO4 SO42 Hypochlorous acid Hypochlorite Sulfuric acid Sulfate H2SO3 SO32 Sulfurous acid Sulfite 2 Anhydrides Ex: H2O + SO3 = anhydride H2SO4 acid form Acidic SO3 / H2SO4 “P2O5” / H3PO4 CO2/H2CO3 Basic Na2O / NaOH Amphoteric Al2O3 / Al(OH)3 3 Trends in acidity 4 Pauling’s rules for pKa‘s of oxoacids 1. Write formula as MOp(OH)q 2. pKa 8 – 5p 3. Each succeeding deprotonation increases the pKa by 5 Ex: rewrite HNO3 as NO2(OH) p = 2; pKa 8 – 5(2) 2 (exptl value is 1.4) Ex: rewrite H3PO4 as PO(OH)3 p = 1; pKa1 8 – 5(1) 3 (exptl value is 2.1) pKa2 8 (exptl value is 7.4) pKa3 13 (exptl value is 12.7) 5 pKa values p Pauling pKa calcn exptl Cl(OH) 0 8 7.5 ClO(OH) 1 3 2.0 ClO2(OH) 2 2 1.2 ClO3(OH) 3 7 ≈ 10 HlO4 + 2H2O H5IO6 6 Acid/base chemistry of complexes Aqueous chemistry: H2O Fe(NO3)3 [Fe(OH2)6]3+(aq) + 3 NO3(aq) 2 [Fe(OH2)6]3+ (aq) Hexaaquairon(III), pKa ~ 3 = [Fe2(OH2)10OH]5+ (aq) + H3O+(aq) dimer 7 Lewis acids and bases A LA + :B = LB A:B complex LA = e pr acceptor; LB = e pr donor Lewis definition is more general than BL definition, does not require aqueous or protic solvent Ex: 6 :CO = [W(CO)6] BCl3 + :OEt2 = BCl3:OEt2 W + Fe3+(g) + 6 :OH2 → [Fe(OH2)6]3+ 8 log K and ligand type 9