7100 Roadmap - Microwave & RF

Download Report

Transcript 7100 Roadmap - Microwave & RF

System-level Challenges in the Design of a Wideband RF Transceiver for LTE and LTE-A

Dr. Jin Wang

Senior Algorithm Engineer Aeroflex Test Solutions Stevenage, UK www.aeroflex.com

Aeroflex Company Confidential

Agenda

1. Design Objectives

2. Design Challenges

3. Summary

4. Q&A www.aeroflex.com

1.1 3GPP LTE Air Interface Overview

Modulation Signal Bandwidth Signal PAPR (Crest Factor) FFT Size Sub-Carrier Spacing DL MIMO UL MIMO Max Data Rate DL: OFDM UL: DFTS-OFDM 1.4,3,5,10,15,20 MHz DL: ~11 dB, UL: ~8 dB 2048 (Normal CP) 15 kHz (Normal CP) 2x2 (Rel-8) 4x4, 4x2 (Rel-9) 2x2 (Rel-9) DL: 150~300 Mbps UL: 50~100 Mbps www.aeroflex.com

1.2 Product Overview: TM500

Industry Standard Base Station Tester for LTE and HSPA

LTE Rel-8,9,10 and beyond

From RF to Protocol Layers www.aeroflex.com

1.3 Wideband Radio Card

▼ ▼ ▼ ▼

Operating Frequencies: 400MHz~4GHz Signal Bandwidth: up to 20 MHz Transceiver Units: 2 RX, 1 TX Form Factor: double height and double width of a uTCA slot www.aeroflex.com

1.4 Translate System Req. to RF Req.

System Engineers Receiver Sensitivity Maximum Throughput System Bandwidth MIMO Hand-over … Product Managers/End Users Noise Figure EVM Floor Filter Spec.

LO Phase Noise LO Settling Time … RF Engineers

www.aeroflex.com

2. RF Design Challenges

Homodyne or Heterodyne?

What’s the minimum requirement on Noise Figure?

What’s the minimum requirement on EVM floor?

The biggest blocker might be your own TX!

Do we need to worry about IQ imbalance?

What about phase noise?

Further challenges in LTE-A www.aeroflex.com

2.1 Homodyne or Heterodyne?

Homodyne (direct conversion/zero-IF) Pros: - fewer processing stages - No image frequency problem - Mainstream design in recent years Cons: - IQ imbalance - DC offset or carrier leakage www.aeroflex.com

2.2 Noise Figure < ?

(I)

Max noise figure allowed depends on the RX sensitivity requirement, e.g.

3GPP requires that no less than 95% of maximum throughput is achieved on a reference measurement channel (BW=10MHz) when minimum input power of P REFSENS =-97dBm is applied (from 3GPP 36.101).

100 90 80 70 60 50 40 30 20 10 0 -2 -1.8

-1.6

-1.4

-1.2

SNR (dB) -1 -0.8

-0.6

SNR min = -1 dB

www.aeroflex.com

2.2 Noise Figure (Cont’d)

P REFSENS SNR P N = P thermal + NF NF P thermal = kTB NF<7 dB

(II) NF = P REFSENS – P thermal – SNR min

www.aeroflex.com

2.3 EVM Floor

EVM  E E     

rms

Error Level

rms

Signal Level SNR   20 Log( EVM ) (dB) ▼

EVM results from various RF non-idealities: carrier leakage, IQ imbalance, gain compression, phase noise, frequency error, etc;

Overall EVM floor limits the max achievable T-put!

Given a EVM value, the error power increases linearly with the signal power;

The effect on BLER/T-put may be treated as noise, hence EVM can be converted to SNR; www.aeroflex.com

2.3.1 EVM Floor, Noise Figure and SNR

SNR clamped by the EVM floor.

Noise Figure=7dB, EVM Floor=1.8% 50

SNR increases with the input signal power.

40 1% 30 3%

1.8%

20 10% 10 0 -10 -130 -120 -110 -100 -90 RSRP (dBm/sc) -80 -70 Noise limited EVM limited Combined -60 -50 Note: SNR is defined at the output of the RF front-end, i.e. baseband 32%

LTE requires near 30 dB SNR to achieve the max T-put (150Mbps with 2 layers).

www.aeroflex.com

2.3.2 EVM Floor, Noise Figure and T-put

Consider three RF front-end with different NF and EVM characteristics.

No effect on T-put.

EVM is the differential

50

factor.

40 1% 30 3%

NF is the differential factor.

20 10 0 -10 -130 -120 -110 -100 -90 RSRP (dBm/sc) -80 NF=4dB,EVM=1% NF=7dB,EVM=1.8% NF=7dB,EVM=3% -70 -60 -50 10% 32%

www.aeroflex.com

2.4 TX Blocking

TX Max Power: ~ 23 dBm

Transmitter

duplex

Receiver

RX REFSENS: ~ -97 dBm ▼ ▼

The TX power can be 120 dB higher than the RX power; The TX and RX frequency separation can be as small as 30 MHz; www.aeroflex.com

2.4 TX Blocking (Cont’d)

Consequences:

Particularly serious for wideband transceivers

Cause compression in the RX amplifiers and demodulator

▼ ▼

Desensitize the receiver Limit the max TX power allowed Solutions:

Application-specific:

- Block-tolerant front-end; - TX Power back-off for lab operations; - Half-duplex mode for budget handsets; Advanced techniques: - Adaptive interference cancellation duplexer www.aeroflex.com

2.5 IQ Imbalance

ε: Amplitude error θ: Phase error

Wanted Signal

x

RF (

t

) 

I

(

t

) cos( 

c t

) 

Q

(

t

) sin( 

c t

),

x LPF

(

t

)     cos(   ) cos(   )  

x L

(

t

) 

j

 

j

sin( sin(   ) )  

I I

(

t

(

t

) )  

jQ

(

t jQ

(

t

) )   

x

*

L

(

t

)

Image Signal www.aeroflex.com

2.5.1 Self-Interference induced by IQ Imbalance

140 X: 4.8

Y: 134.9

120 X: -4.8

Y: 93.87

100 80

SIR=41 dB

60 40 20 -80 -60 -40 -20 0 Freq (MHz) 20 40 60 80

Single tone measurement - Input: cos(2 π(f c +f m )t) - Output Expected : cos(2 πf m t)+j sin(2 πf m t) www.aeroflex.com

2.5.2 SIR of IQ Imbalance

6 20 18 20

Desired Region

5 22 4 24 3 26 2 30 28 26 22 24 20 22 20 18 1 40 38 36 34 32 30 28 24 22 20 26 0 0 1 2 3 7 8 9 10 4 5 6 Amplitude Error (%) SIR  10log10     2 2    10log10   1   2   2 tan tan 2 2      

www.aeroflex.com

2.6 LO Phase Noise

P

 

f

1

f

2

L

(f) df

 rms  EVM 180    180 2

P

(deg)  rms  100 %

Source: Analog Devices® ADF4350 datasheet Integrated Phase Noise Power (15KHz~10MHz): P = -44.1 (dBc) RMS Phase Error: θ RMS = 0.50 (deg) EVM = 0.88% www.aeroflex.com

2.6.1 Phase Noise on OFDM Constellation

1.5

1 0.5

0 -0.5

-1 -1.5

-1.5

CPE dominated

Loop Bandwidth=10kHz -1 -0.5

0 0.5

1 1.5

▼ ▼ ▼

Two types of effects: - Common Phase Error (CPE) - Inter sub-Carrier Interference (ICI) CPE can be easily corrected, ICI not Loop BW ↓ lock time ↑

1.5

1 0.5

0 -0.5

-1 -1.5

-1.5

ICI dominated

Loop Bandwidth=40kHz -1 -0.5

0 0.5

1 1.5

www.aeroflex.com

2.7 LTE-A: High Order MIMO

Downlink: 8x8 - 8 RX processing chains – high density - L1 data rate 600 Mbps - ADC Sample data rate: 30.72MSamp/s x (2x16 bits/sample)x8 = 7.86 Gbps Uplink: 4x4 - 4 TX processing chains – high density - L1 data rate 300 Mbps - DAC sample data rate: 30.72MSamp/s x (2x16 bits/sample)x4 = 3.93 Gbps www.aeroflex.com

2.8 LTE-A: Carrier Aggregation

Contiguous CA N*300kHz 20 MHz 20 MHz 20 MHz Band 3 20 MHz Band 4 20 MHz ~ 40 MHz Non-contiguous CA 20 MHz CC for operator-B 5 MHz N*100 kHz 20 MHz 10 MHz 10 MHz Band 7 15 MHz Band 3 Band 4 N*300 kHz Non-contiguous aggregated CC for operator-A Band 7

LTE-A allows up to 5 component carriers. Each component carrier can be 1.4, 3, 5, 10, 15 and 20 MHz. The maximum aggregated system bandwidth is 100 MHz. The three possible carrier aggregation types are: - Intra-band contiguous carrier aggregation - Intra-band non-contiguous carrier aggregation - Inter-band carrier aggregation www.aeroflex.com

LTE-A in the News

World-record 1.4 Gbps in LTE-Advanced demo (03/2012 source: http://4g-portal.com ) - 5 component carriers - 20MHz 4x4 MIMO each - and TM500!

TM500 supports the development of multiband lightRadio ® technology.

www.aeroflex.com

Summary

Introduction to LTE and the Test Mobile: TM500;

How to determine various RF system parameters such as: noise figure, EVM floor, TX leakage, IQ imbalance and phase noise;

Further challenges from LTE-A: high order MIMO and CA; www.aeroflex.com