Transcript PPT

CS5205: Foundation in Programming
Languages
Lecture 1 : Overview
“Language Foundation,
Extensions and Reasoning
Lecturer : Chin Wei Ngan
Email : [email protected]
Office : S15 06-01
CS5205
Introduction
1
Course Objectives
- graduate-level course with foundation focus
- languages as tool for programming
- foundations for reasoning about programs
- explore various language innovations
CS5205
Introduction
2
Course Outline
• Lecture Topics (13 weeks)
• Lambda Calculus
• Advanced Language (Haskell)
http://www.haskell.org
• Type System for Lightweight Analysis
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
• Semantics
• Formal Reasoning – Separation Logic + Provers
• Language Innovations (paper readings)
CS5205
Introduction
3
Administrative Matters
- mainly IVLE
- Reading Materials (mostly online):
www.haskell.org
Robert Harper : Foundations of Practical Programming Languages.
Free PL books : http://www.cs.uu.nl/~franka/ref
- Lectures + Assignments + Presentation + Exam
- Assignment/Quiz (30%)
- Paper Reading + Critique (25%)
- Exam (45%)
CS5205
Introduction
4
Paper Critique
•
•
•
•
•
•
•
Focus on Language Innovations
Select Topic (Week 3)
2-Page Summary (Week 5)
Prepare Presentation (Week 7)
Oral Presentation (Last 4 weeks)
Paper Critique (Week 13)
Possible Topics
•
•
•
•
•
•
CS5205
Concurrent and MultiCore Programming
Software Transaction Memory
GUI Programming with Array
Testing with QuickCheck
IDE for Haskell
SELinks (OCaml)
Introduction
5
Advanced Language - Haskell
•
•
•
•
•
•
•
Strongly-typed with polymorphism
Higher-order functions
Pure Lazy Language.
Algebraic data types + records
Exceptions
Type classes, Monads, Arrows, etc
Advantages : concise, abstract, reuse
• Why use Haskell ?
CS5205
cool & greater
productivity
Introduction
6
Example - Haskell Program
• Apply a function to every element of a list.
a type variable
data List a = Nil | Cons a (List a)
type is : (a  b)  (List a)  (List b)
map f Nil
= Nil
map f (Cons x xs) = Cons (f x) (map f xs)
map inc (Cons 1 (Cons 2 (Cons 3 Nil)))
==> (Cons 2 (Cons 3 (Cons 4 Nil)))
CS5205
Introduction
7
Some Applications
• Hoogle – search in code library
• Darcs – distributed version control
• Programming user interface with arrows..
• How to program multicore?
• map/reduce and Cloud computing
• Some issues to be studied in Paper Reading.
CS5205
Introduction
8
Type System – Lightweight Analysis
•
Abstract description of code + genericity
•
Compile-time analysis that is tractable
•
Guarantees absence of some bad behaviors
•
Issues – expressivity, soundness,
completeness, inference?
•
How to use, design and prove type system.
•
Why?
CS5205
detect bugs
Introduction
9
Specification with Separation Logic
•
•
•
•
Is sorting algorithm correct?
Any memory leaks?
Any null pointer dereference?
Any array bound violation?
•
What is the your specification/contract?
•
How to verify program correctness?
•
Issues – mutation and aliasing
•
Why?
CS5205
sw reliability
Introduction
10
Lambda Calculus
•
•
•
•
•
Untyped Lambda Calculus
Evaluation Strategy
Techniques - encoding, extensions, recursion
Operational Semantics
Explicit Typing
Introduction to Lambda Calculus:
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
http://www.cs.chalmers.se/Cs/Research/Logic/TypesSS05/Extra/geuvers.pdf
Lambda Calculator :
http://ozark.hendrix.edu/~burch/proj/lambda/download.html
CS5205
Introduction
11
Untyped Lambda Calculus
• Extremely simple programming language which
captures core aspects of computation and yet allows
programs to be treated as mathematical objects.
• Focused on functions and applications.
• Invented by Alonzo (1936,1941), used in
programming (Lisp) by John McCarthy (1959).
CS5205
Introduction
12
Functions without Names
Usually functions are given a name (e.g. in language C):
int plusOne(int x) { return x+1; }
…plusOne(5)…
However, function names can also be dropped:
(int (int x) { return x+1;} ) (5)
Notation used in untyped lambda calculus:
(l x . x+1) (5)
CS5205
Introduction
13
Syntax
In purest form (no constraints, no built-in operations), the lambda calculus
has the following syntax.
t ::=
terms
variable
abstraction
application
x
lx.t
tt
This is simplest universal programming language!
CS5205
Introduction
14
Conventions
• Parentheses are used to avoid ambiguities.
e.g. x y z can be either (x y) z or x (y z)
• Two conventions for avoiding too many parentheses:
• Applications associates to the left
e.g. x y z stands for (x y) z
•
Bodies of lambdas extend as far as possible.
e.g. l x. l y. x y x stands for l x. (l y. ((x y) x)).
• Nested lambdas may be collapsed together.
e.g. l x. l y. x y x can be written as l x y. x y x
CS5205
Introduction
15
Scope
• An occurrence of variable x is said to be bound when it
occurs in the body t of an abstraction l x . t
• An occurrence of x is free if it appears in a position where
it is not bound by an enclosing abstraction of x.
• Examples: x y
ly. x y
l x. x
(l x. x x) (l x. x x)
(l x. x) y
(l x. x) x
CS5205
Introduction
(identity function)
(non-stop loop)
16
Alpha Renaming
• Lambda expressions are equivalent up to bound variable
renaming.
e.g. l x. x
=a l y. y
l y. x y
=a l z. x z
But NOT:
l y. x y
=a l y. z y
• Alpha renaming rule:
lx.E
CS5205
=a l z . [x a z] E
Introduction
(z is not free in E)
17
Beta Reduction
• An application whose LHS is an abstraction, evaluates to
the body of the abstraction with parameter substitution.
e.g. (l x. x y) z
!b z y
(l x. y) z
!b
(l x. x x) (l x. x x) !b
y
(l x. x x) (l x. x x)
• Beta reduction rule (operational semantics):
( l x . t1 ) t2
!b
[x a t2] t1
Expression of form ( l x . t1 ) t2 is called a redex (reducible
expression).
CS5205
Introduction
18
Evaluation Strategies
• A term may have many redexes. Evaluation strategies can
be used to limit the number of ways in which a term can
be reduced.
• An evaluation strategy is deterministic, if it allows
reduction with at most one redex, for any term.
• Examples:
- full beta reduction
- normal order
- call by name
- call by value, etc
CS5205
Introduction
19
Full Beta Reduction
• Any redex can be chosen, and evaluation proceeds until no
more redexes found.
• Example:
(lx.x) ((lx.x) (lz. (lx.x) z))
denoted by id (id (lz. id z))
Three possible redexes to choose:
id (id (lz. id z))
id (id (lz. id z))
id (id (lz. id z))
• Reduction:
CS5205
id (id (lz. id z))
! id (id (lz.z))
! id (lz.z)
! lz.z
!
Introduction
20
Normal Order Reduction
• Deterministic strategy which chooses the leftmost,
outermost redex, until no more redexes.
• Example Reduction:
id (id (lz. id z))
! id (lz. id z))
! lz.id z
! lz.z
!
CS5205
Introduction
21
Call by Name Reduction
• Chooses the leftmost, outermost redex, but never reduces
inside abstractions.
• Example:
id (id (lz. id z))
! id (lz. id z))
! lz.id z
!
CS5205
Introduction
22
Call by Value Reduction
• Chooses the leftmost, innermost redex whose RHS is a
value; and never reduces inside abstractions.
• Example:
id (id (lz. id z))
! id (lz. id z)
! lz.id z
!
CS5205
Introduction
23
Strict vs Non-Strict Languages
• Strict languages always evaluate all arguments to function
before entering call. They employ call-by-value evaluation
(e.g. C, Java, ML).
• Non-strict languages will enter function call and only
evaluate the arguments as they are required. Call-by-name
(e.g. Algol-60) and call-by-need (e.g. Haskell) are possible
evaluation strategies, with the latter avoiding the reevaluation of arguments.
• In the case of call-by-name, the evaluation of argument
occurs with each parameter access.
CS5205
Introduction
24
Programming Techniques in l-Calculus
• Multiple arguments.
• Church Booleans.
• Pairs.
• Church Numerals.
• Recursion.
• Extended Calculus
CS5205
Introduction
25
Multiple Arguments
• Pass multiple arguments one by one using lambda
abstraction as intermediate results. The process is also
known as currying.
• Example:
f = l(x,y).s
f = l x. (l y. s)
Application:
f(v,w)
(f v) w
requires pairs as
primitve types
CS5205
requires higher
order feature
Introduction
26
Church Booleans
• Church’s encodings for true/false type with a conditional:
true
false
if
•
= l t. l f. t
= l t. l f. f
= l l. l m. l n. l m n
Example:
if true v w
= (l l. l m. l n. l m n) true v w
! true v w
= (l t. l f. t) v w
! v
• Boolean and operation can be defined as:
and = l a. l b. if a b false
= l a. l b. (l l. l m. l n. l m n) a b false
= l a. l b. a b false
CS5205
Introduction
27
Pairs
• Define the functions pair to construct a pair of values, fst to
get the first component and snd to get the second
component of a given pair as follows:
pair
fst
snd
= l f. l s. l b. b f s
= l p. p true
= l p. p false
• Example:
snd (pair c d)
= (l p. p false) ((l f. l s. l b. b f s) c d)
! (l p. p false) (l b. b c d)
! (l b. b c d) false
! false c d
! d
CS5205
Introduction
28
Church Numerals
• Numbers can be encoded by:
c0
c1
c2
c3
CS5205
=
=
=
=
:
l s. l z. z
l s. l z. s z
l s. l z. s (s z)
l s. l z. s (s (s z))
Introduction
29
Church Numerals
•
Successor function can be defined as:
succ =
l n. l s. l z. s (n s z)
Example:
succ c1
=
(l n. l s. l z. s (n s z)) (l s. l z. s z)
 l s. l z. s ((l s. l z. s z) s z)
! l s. l z. s (s z)
succ c2
= l n. l s. l z. s (n s z) (l s. l z. s (s z))
! l s. l z. s ((l s. l z. s (s z)) s z)
! l s. l z. s (s (s z))
CS5205
Introduction
30
Church Numerals
• Other Arithmetic Operations:
plus = l m. l n. l s. l z. m s (n s z)
times = l m. l n. m (plus n) c0
iszero = l m. m (l x. false) true
•
Exercise : Try out the following.
plus c1 x
times c0 x
times x c1
iszero c0
iszero c2
CS5205
Introduction
31
Recursion
• Some terms go into a loop and do not have normal form.
Example:
(l x. x x) (l x. x x)
! (l x. x x) (l x. x x)
! …
•
However, others have an interesting property
fix = λf. (λx. f (x x)) (λx. f (x x))
fix = l f. (l x. f (l y. x x y)) (l x. f (l y. x x y))
that returns a fix-point for a given functional.
Given
x =hx
x is fix-point of h
That is:
CS5205
= fix h
fix h ! h (fix h) ! h (h (fix h)) ! …
Introduction
32
Example - Factorial
• We can define factorial as:
fact = l n. if (n<=1) then 1 else times n (fact (pred n))
= (l h. l n. if (n<=1) then 1 else times n (h (pred n))) fact
= fix (l h. l n. if (n<=1) then 1 else times n (h (pred n)))
CS5205
Introduction
33
Example - Factorial
•
•
Recall:
fact = fix (l h. l n. if (n<=1) then 1 else times n (h (pred n)))
Let g = (l h. l n. if (n<=1) then 1 else times n (h (pred n)))
Example reduction:
fact 3 =
=
=
=
=
=
=
=
CS5205
fix g 3
g (fix g) 3
times 3 ((fix g) (pred 3))
times 3 (g (fix g) 2)
times 3 (times 2 ((fix g) (pred 2)))
times 3 (times 2 (g (fix g) 1))
times 3 (times 2 1)
6
Introduction
34
Enriching the Calculus
• We can add constants and built-in primitives to enrich lcalculus. For example, we can add boolean and arithmetic
constants and primitives (e.g. true, false, if, zero, succ, iszero,
pred) into an enriched language we call lNB:
• Example:
l x. succ (succ x) 2 lNB
l x. true 2 lNB
CS5205
Introduction
35
Formal Treatment of Lambda Calculus
•
Let V be a countable set of variable names. The set of
terms is the smallest set T such that:
1. x 2 T for every x 2 V
2. if t1 2 T and x 2 V, then l x. t1 2 T
3. if t1 2 T and t2 2 T, then t1 t2 2 T
•
Recall syntax of lambda calculus:
t ::=
terms
x
variable
l x.t
abstraction
tt
application
CS5205
Introduction
36
Free Variables
• The set of free variables of a term t is defined as:
FV(x)
=
{x}
FV(l x.t)
=
FV(t) \ {x}
FV(t1 t2)
=
FV(t1) [ FV(t2)
CS5205
Introduction
37
Substitution
• Works when free variables are replaced by term that does
not clash:
[x a l z. z w] (l y.x) = (l y. l z. z w)
• However, problem if there is name capture/clash:
[x a l z. z w] (l x.x)  (l x. l z. z w)
[x a l z. z w] (l w.x)  (l w. l z. z w)
CS5205
Introduction
38
Formal Defn of Substitution
[x a s] x
[x a s] y
[x a s] (t1 t2)
= s
if y=x
= y
if yx
= ([x a s] t1) ([x a s] t2)
[x a s] (l y.t)
= l y.t
if y=x
[x a s] (l y.t)
= l y. [x a s] t
if y x Æ y FV(s)
[x a s] (l y.t)
= [x a s] (l z. [y a z] t)
if y x Æ y 2 FV(s) Æ fresh z
CS5205
Introduction
39
Syntax of Lambda Calculus
•
Term:
t ::=
tt
terms
variable
abstraction
application
x
l x.t
value
variable
abstraction value
x
l x.t
•
Value:
v ::=
CS5205
Introduction
40
Call-by-Value Semantics
premise
conclusion
t1 ! t’1
(E-App1)
t2 ! t’2
(E-App2)
t1 t2 ! t’1 t2
v1 t2 ! v1 t’2
(l x.t) v ! [x a v] t
CS5205
Introduction
(E-AppAbs)
41
Call-by-Name Semantics
t1 ! t’1
(E-App1)
t1 t2 ! t’1 t2
(l x.t) t2 ! [x a t2] t
CS5205
Introduction
(E-AppAbs)
42
Getting Stuck
• Evaluation can get stuck. (Note that only values are labstraction)
e.g. (x y)
• In extended lambda calculus, evaluation can also get stuck
due to the absence of certain primitive rules.
(l x. succ x) true ! succ true !
CS5205
Introduction
43
Boolean-Enriched Lambda Calculus
•
Term:
t ::=
x
l x.t
tt
true
false
if t then t else t
•
Value:
v ::=
l x.t
true
false
CS5205
terms
variable
abstraction
application
constant true
constant false
conditional
value
abstraction value
true value
false value
Introduction
44
Key Ideas
• Exact typing impossible.
if <long and tricky expr> then true else (l x.x)
• Need to introduce function type, but need argument and
result types.
if true then (l x.true) else (l x.x)
CS5205
Introduction
45
Simple Types
• The set of simple types over the type Bool is generated by
the following grammar:
•
T ::=
Bool
T!T
•
types
type of booleans
type of functions
! is right-associative:
T1 ! T2 ! T3
CS5205
denotes
Introduction
T1 ! (T2 ! T3)
46
Implicit or Explicit Typing
• Languages in which the programmer declares all types are
called explicitly typed. Languages where a typechecker
infers (almost) all types is called implicitly typed.
• Explicitly-typed languages places onus on programmer but
are usually better documented. Also, compile-time
analysis is simplified.
CS5205
Introduction
47
Explicitly Typed Lambda Calculus
•
t ::=
terms
…
l x : T.t
…
•
v ::=
•
T ::=
l x : T.t
…
Bool
T!T
CS5205
abstraction
value
abstraction value
types
type of booleans
type of functions
Introduction
48
Examples
true
l x:Bool . x
(l x:Bool . x) true
if false then (l x:Bool . True) else (l x:Bool . x)
CS5205
Introduction
49