D and D /A Conversion
Download
Report
Transcript D and D /A Conversion
A/D and D/A Conversion
Quote of the Day
Science is organized knowledge. Wisdom is
organized life.
Immanuel Kant
Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, ©1999-2000 Prentice Hall
Inc.
Ideal Conversion
• Up to this point we assumed ideal D/C and C/D conversion
• In practice, however
– Continuous-time signals are not perfectly bandlimited
– D/C and C/D converters can only be approximated with D/A and
A/D converters
• A more realistic model for digital signal processing
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
2
Prefiltering to Avoid Aliasing
• Desirable to minimize sampling rate
– Minimizes amount of data to process
• No point of sampling high frequencies that are not of interest
– Frequencies we don’t expect any signal in only contribute as noise
• A low-pass anti-aliasing filter would improve both aspects
• An ideal anti-aliasing filter
1 c / T
Haa j
c
0
• In this case the effective response is
H e jT c
Heff j
c
0
• In practice an ideal low-pass filter is not possible hence
Heff j HaajH ejT
• This would require sharp-cutoff analog filters which are
expansive
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
3
Oversampled A/D Conversion
• The idea is
–
–
–
–
to a have a simple analog anti-aliasing filter
Use higher than required sampling rate
implement sharp anti-aliasing filter in discrete-time
Downsample to desired sampling rate
• Example
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
4
Example
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
5
Analog-to-Digital (A/D) Conversion
• Ideal C/D converters convert continuous-time signals into
infinite-precision discrete-time signals
• In practice we implement C/D converters as the cascade of
• The sample-and-hold device holds current/voltage constant
• The A/D converter converts current/voltage into finiteprecisions number
• The ideal sample-and-hold device has the output
x0 t
xnh0 t nT
n
Copyright (C) 2005 Güner Arslan
1, 0 t T
h0 t
else
0,
351M Digital Signal Processing
6
Sample and Hold
• An ideal sample-and-hold system
• Time-domain representation of sample-and-hold operation
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
7
A/D Converter Model
• An practical A/D converter can be modeled as
• The C/D converter represent the sample-hold-operation
• Quantizer transforms input into a finite set of numbers
ˆ
xn Qxn
• Most of the time uniform quantizers are used
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
8
Uniform Quantizer
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
9
Two’s Complement Numbers
•
•
•
•
Representation for signed numbers in computers
a02B a12B1 ... aB 20
Integer two’s-complement
0
1
B
Fractional two’s-complement a02 a12 ... aB 2
Example B+1=3 bit two’s-complement numbers
-a022+ a121+ a220
-a020+ a12-1+ a22-2
Binary Symbol
Numerical Value
Binary Symbol
Numerical Value
011
3
0.11
3/4
010
2
0.10
2/4
001
1
0.01
1/4
000
0
0.00
0
111
-1
1.11
-1/4
110
-2
1.10
-2/4
101
-3
1.01
-3/4
100
-4
1.00
-4/4
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
10
Example
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
11
Quantization Error
xn xn
• Quantization error: en ˆ
– difference between the original and quantized value
• If quantization step is the quantization error will satisfy
/ 2 en / 2
– As long the input does not clip
• Based on this fact we may use the following simplified model
• In most cases we can assume that
– e[n] is uniformly distributed
random variable
– Is uncorrelated with the signal x[n]
• The variance of e[n] is then
2
2e
12
• And the signal-to-noise ratio of quantization noise for B+1 bits
Xm
SNR 6.02B 10.8 20 log10
x
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
12
D/C Conversion
• Perfect reconstruction requires filtering with ideal LPF
Xr j X e jT Hr j
X e jT : DTFT of sampledsignal
Xr j : FT of reconstructed signal
• The ideal reconstruction filter
T / T
Hr j
0 / T
• The time domain reconstructed signal is
xr t
xn
n
sint nT / T
t nT / T
• In practice we cannot implement an ideal reconstruction filter
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
13
D/A Conversion
• The practical way of D/C conversion is an D/A converter
• It takes a binary code and converts it into continuous-time
output
xDA t Xmˆ
xB nh0 t nT ˆ
xnh0 t nT
n
n
• Using the additive noise model for quantization
xDA t
xnh t nT enh t nT x t e t
n
0
0
n
0
0
• The signal component in frequency domain can be written as
X0 j X ejT H0 j
• So to recover the desired signal component we need a
compensated reconstruction filter of the form
~
H j
Hr j r
H0 j
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
14
Compensated Reconstruction Filter
• The frequency response of zero-order hold is
2 sinT / 2 jT / 2
H0 j
e
• Therefore the compensated reconstruction filter should be
T / 2
e jT / 2 / T
~
Hr j sinT / 2
0
/T
Copyright (C) 2005 Güner Arslan
351M Digital Signal Processing
15