Study of the time reversal violation with neutrons
Download
Report
Transcript Study of the time reversal violation with neutrons
Study of the Time-Reversal Violation
with neutrons
Angular correlations N and R
Elctric dipole moment of neutron
nTRV@PSI
nEDM@PSI
Adam Kozela
Institute of Nuclear Physics, PAN, Cracow, Poland
Adam Kozela
26/09/2014
1
T- and CP-violation
Theories
Observations
II Low of Thermodynamics - „arrow of time”
Byron Asymmetry of the Universe.
Kaon decays: KL -> ππ (1964).
First observation of CP violation, (1988, NA31)
CP violation in CKM matrix, 3rd generation
of quarks and imaginary phase δKM,
difference in decay of KL, KS to π0 π0 i π+ π- .
Direct violation of T in kaon decays:
o
(1998, CPLEAR, CERN),
o
(2000, KTeV, Fermilab), KL-> π+ π- e+ e- .
interaction allows for CP violation without
Many observations of CP violation in the decays
flavour change.
of B mesons (BaBar, SLAC), (Belle, KEK).
Recently: CP violation in the decay of D0
(LHCb).
θ therm in effective Lagrangian of strong
Direct observation of T-violation in entangled
BB meson system.
Adam Kozela
Imaginary parts of coupling constants in
weak interaction.
26/09/2014
Final state interaction.
2
Why neutron?
It is neutral… (application of high electric fields possible).
Long lifetime (886 sec, good and bad…).
Decays by weak interaction (known from TRV).
No effects from nuclear or atomic structure (for free neutrons
exact value of MF, MGT).
Small decay asymmetry A and small charges involved in decay
=> (small and precisely known final state interaction
correction).
Made of u and d quark (very small effect from KM-matrix).
Adam Kozela
26/09/2014
3
Angular correlation in neutron decay
Pp
Jn
(~885.7s)
σT1
n
->
p eνe + 782 keV
se
p
σT2
p
Tp=-p
Ts=-s
TJ = - J
A- decay asymmetry (-0.1173)
R, N – Correlation coefficients
Adam Kozela
26/09/2014
4
Korelacje kierunkowe w rozpadzie neutronu
Pp
Jn
σT1
se
σT2
p
p
PDG:
W ( , J , s , E , E , p , p )
1 a
p p
E E
m
b
E
p
p p
p p
p
p
s G
H
K
L
E
E
E m E E
E E
p
A p B p C p D p p
j E
E
Ep
E E
J
p
p
s
p
s
s p
p p
N s Q
R
Ss
T p
j
E
E E m
E
E E
E E
J
s
p
s
p
p p p s
U p
V
W
j
E E
E
E E E m
J
Adam Kozela
26/09/2014
5
Correlation coefficients N, R and
exotic interactions
Contribution from complex phase δKM and θ-term negligible (~10-12).
Allowing for nonzero exotic couplings in weak interaction
(Jackson, 57):
NFSI~0.068 6∙10-4
RFSI~0.0006 6∙10-6
Beyond Standard Model:
S, T – relative strength of scalar
and tensor couplings
Standard Model
Final state interaction
N measurement: detector test (Re(S), Re(T) known well from other
experiments).
If measured R≠0
Im(C
Adam
Kozela
S) i
Im(CT).
new mechanism of T-(CP) violation, limit on
26/09/2014
6
Experimental setup (Mott Polarimeter), top view
n
V-track
Adam Kozela
26/09/2014
7
Correlation coefficients N and R our result
NFSI~0.0686∙10-4
RFSI~0.00066∙10-6
Former limmitations
NSM·100
N ·100
RSM·100
R·100
T
68
Adam Kozela
62115
26/09/2014
0.6
4125S
C T C 'T
CA
C S C 'S
CV
8
Correlation coefficients N and R our result
NFSI~0.0686∙10-4
RFSI~0.00066∙10-6
Former limmitations
And our result
[Phys. Rev. C 85, 045501]
T
S
N = (62115)·10-3
Adam Kozela
C T C 'T
CA
C S C 'S
CV
R = (4125)·10-3
26/09/2014
9
Correlation coefficients N and R, our result
First measurement of correlation coefficients R i N in neutron
decay is consistent with Standard Model expectations and with
Time Reversal Symmetry.
T
S
N = (62115)·10-3
Adam Kozela
C T C 'T
CA
C S C 'S
CV
R = (4125)·10-3
26/09/2014
10
Electric Dipole Moment
Simple case:
Particle with spin:
+
Q
e
-Q
+
_
_+
Adam Kozela
_
+
Electric dipole moment of particle with spin
Violates both Parity and time Reversal
Symmetry
26/09/2014
11
nEDM – predictions
θ-term from QCD Lagrangian: even
~10-18
e·cm.
nEDN
[e·cm]
~10-9
„Strong CP-problem”
Current limit: 2.9·10–26 e·cm.
nEDM@PSI final goal: 5·10-28 e·cm
Contribution from complex phase δKM negligible
below ~10-32 e·cm.
Adam Kozela
26/09/2014
12
nEDM current precision
dn=(+0.2 ± 1.5 ± 0.7)·10-26 e·cm.
d ≈ 2 µm
Adam Kozela
26/09/2014
n
13
nEDM @ Paul Scherrer Institute
[successor of RAL,Sussex,ILL]
Ramsey resonance method of
separate oscillating fields applied
for Ultra Cold Neutrons.
UCN; v<10m/s
Adam Kozela
26/09/2014
14
Ramsey resonance method of
oscillating fields - principle
Sample of polarized neutrons
In constant, uniform fields B (1 μT) and
E (12 kV/cm).
1.
RF „π/2” pulse (30 Hz).
2.
E
3.
or
Free precession of neutron spin
T ~ 150200 s.
E↑↑B:
ωL+ = 2/ћ(μnB + dnE)
E↑↓B:
ωL- = 2/ћ(μnB - dnE)
dn = ћ/4 ∙Δω/E
4.
Second „π/2” pulse.
5.
Analysis of neutron polarization.
Adam Kozela
26/09/2014
15
Ramsey resonance method of
oscillating fields - principle
C1
dn
( )
4E
Statistical uncertainty:
s (d n )
C2
Adam Kozela
26/09/2014
2 ET
N
where:
visibility
x – working points
C1 C 2
C1 C 2
E: electric field intensity,
T: free precession time
N: number of neutrons counted
after T.
16
nEDM @ PSI improvements
UCN source, 1000 UCN/cm3
Magnetometry and
magnetic field control
Solid D2,30l,~5K
•
•
•
•
Adam Kozela
New shielding
Surrounding Field Compensation
New co-magnetometers…
…
26/09/2014
17
Adam Kozela
26/09/2014
18
Współczynniki korelacji N i R a amplitudy
wymiany leptokwarków
d
X
-1/3
u
e
spin
0
1
2/3
F
f
1/3
H
h
d
X
e
u
2/3
e
Q
e
Wcześniejsze ograniczenia
i nasz rezultat
LQ-wektorowe
N = 62115
Adam Kozela
R = 4125
26/09/2014
19
Minimalny Supersymetryczny Model Standardowy z
łamaniem parzystości R
e
~
e
L
e
d
u
d
~
dR
u
e
R = 4125
e
N = 62115
Adam Kozela
26/09/2014
20