power system protection presentation dated 03-10-2013

Download Report

Transcript power system protection presentation dated 03-10-2013

MICROPROCESSOR BASED POWER SYSTEM PROTECTION
NUMERICAL RELAYS
1.TRANSMISSION LINES PROTECTION
2.TRANSFORMER
3.BUS-BAR
4.DISTRIBUTION FEEDERS
5.GENERATOR
6.MOTOR
DIGITAL RELAYS
•LOW COST
•MATHEMATICAL CAPABILITY/PROCESSOR BASED
•SELF CHECKING
•LOW CT/PT BURDEN
•METERING
•FAULT REPORT
•FAULT- LOCATION
•EVENT LOGGING
•OSCILLOGRAPHY RECORD/FAULT DATA
INFORMATION
DIGITAL RELAYS
•STANDARD HARDWARE
•FLEXIBILITY IN OPERATION
•MULTI FUNCTION
•COMMUNICATION
•ADAPTIVE RELAYING
•CONNECTIVITY WITH SCADA
•ADOPTING RTU FUNCTION
KEYBOARD INTERFACE
DIGITAL INPUT
SUBSYSTEM
POWER
SYSTEM
INTERFACE
ANALOG INPUT
SUBSYSTEM
COMMUNICATON
PORT
RELAY
SOFTWAE
DIGITAL OUTPUT
SUBSYSTEM
CONSOLE PANEL
LCD/ LED
TARGETS/ALARMS
DIGITAL RELAY GENERAL BLOCK DIAGRAM
POWER
SUPPLY
RAM
ROM
SIGNAL
Substation
Equipment
CONDITIONING
MUX
EQUIPMENT
ANALOG TO
DIGITAL
CONVERTER
(ADC)
MICROPROCESSOR
EEPROM
POWER
SUPPLY
Address /Data Bus
LED
Target
LCD Display
Front- Panel
Controls
Serial I/O
OPTOISOLATION
RELAY
O/P
CONTACT
INPUTS
OPTOISOLATION
DIGITAL RELAY HARDWARE BLOCK DIAGRAM
CONFIGURATION FOR DEMONSTRATION
20’ MONITOR
OWS
20’ MONITOR
20’ MONITOR
OWS
OWS
OC NET
ON LAN
INK JET PRINTER-2
LASER JET PRINTER-1
HUB
REDUNDANT
SERVER
+
EWS
SERVER
+
EWS
WINDOWS NT
BASED MMI
BIT BUS(MMI)
BIT BUS(REDUNDANT)
BAY
CONTROLLER
BAY
CONTROLLER
BAY
CONTROLLER
PROTECTION
PROTECTION
PROTECTION
BUSBAR BAY
LINE BAY
TRANSFORMER BAY
FOR METERING
FOR O.C PROTECTION
FOR METERING
MOCB
ISOLATOR
CB
FOR DIFFERENTIAL PROTECTION
33:6.6 KV Y
POWER T/F
 TRANSFORMER
DIFFERENTIAL PROTECTION
PT
FOR O.C PROTECTION
6.6 KV:110 V
FOR METERING
OCB 800A
400 A
OCB
BUS COUPLER
OC
100:1
PROTECTION
1
2
FEEDER 1
3
4
5
6 7 8
STATION
TRANSFORMER
9
10
TO ELECTO
MAGNETIC LAB
ONE LINE DIAGRAM OF THE DISTRIBUTION SUBSTATION AT
CORP. R & D DIVIN
11
X-Scale 1cm =10 ms
Y- Scale 1 cm=5 mV
2.5 ms
FILTER OUTPUT
LINE CURRENT
WAVE SHAPE OF CURRENT SIGNAL UNDER LOAD CONDITION
WAVE SHAPE OF CURRENT SIGNAL AT NO LOAD
BASIC ALGORITHMS
1.Man & Morrison
Ip
2
 i
2
  tan
ik
'

 (
i'

1
2
)

i
(
)
i'
i k  1 i k 1
(
)
2h
2.RAMA MOORTY
Vs 
1
N
Vc 
1
v
[2 Vk
 N  l
Sin (
2 l
)
N
l 1
N 1
[V k
N
V
N 1
 n
 Vk  2 Vk
 N  1
Cos (
N
l 1


(V
tan
2
s
1
(
2 l
 V
V
c
V
s
2
c
)
)
3.Mc Innes & Morrison
v R
eff
i L
vk
[
]  [f(i
v k 1
i
di
eff
k, k  1
dt
)] [
R eff
L eff
]
THE DETAILS OF THE PROTECTION ALGORITHM
OVER CURRENT RELAY TP 51
[ IL
UNDER VOLTAGE RELAY B27
RATIO DIFFERENTIAL RELAY
B 87
2
[ IH
2
2
V AB
{ Is
It
2
2



1
2
K

2
K

2
K
K
Ks
]
]
2
3
2
4
,
V AB
.MAX.(
2
7
Is (t ) 

i n ( t );
n 1
7
it (t ) 

(t )
n2
in (t )
 V A (t )  V B (t )
I1
2
,
I
2
2
)}  K
2
5
PROTEC – BR
Numerical Feeder Protection Relay
FUNCTIONS:
PROTEC-BR is a microprocessor based
multifunction numeric relay for a distribution
substation feeder.
Three phase o/c relay
Earthfault relay
Thermal Overload relay
Undercurrent protection
Circuit Breaker failure
Detection
Cold load pickup
Latching output contacts
Setting groups
Blocking logic
Event recording & Metering
50 / 51
50N / 51N
49
37
50 BF
86
2
FEATURES
Applicable to substations of various types and ratings
Compact rack
User configurable protection scheme
Online display of parameters and variables
Powerful self diagnostics and failsafe mode of operation
Can be powered with 110 / 220 V dc from station batteries
CPRI certification as per IEC-60255 standards
AUTORECLOSER RELAY
PROTECTION FUNCTIONS
• THREE PHASE O/C WITH SELECTABLE
IDMT/DEFINITE TIME CHARACTERISTICS
• EARTH FAULT WITH SELECTABLE IDMT /
DEFINITE TIME CHARACTERISTICS
• COLD LOAD PICKUP LOGIC
• CIRCUIT BREAKER FAILURE
• BROKEN CONDUCTOR
CONTROL FUNCTIONS
•MULTI-SHOT (4) AUTORECLOSER
• EACH SHOT IS INDEPENDENTLY PROGRAMABLE
• CIRCUIT BREAKER CONTROL TWO SETTING GROUPS
Numerical Motor Protection Relay
FEATURES
• Locked Rotor Protection based on
impedance measurement
• Three phase o/c relay with selectable
IDMT /definite time characteristics
• Earth fault relay with selectable IDMT /
definite time characteristics
• Negative sequence relay
• Thermal Overload protection
• Wide setting range
• Suitable for medium and large motors
EW S &
OWS
R S 485 B U S
P R O T E C -B R
1
4
2
3
5
6
F3
F4
7
.
8
9
YES
NO
IMOK
PW GD
F1
0
BR KF L
TH OL
P R O T E C -B R
F2
CR
EF SN S
OC S N S
TR I P
AC K
1
4
2
3
5
6
F3
F4
7
.
8
9
Y ES
NO
IMOK
PW GD
F1
0
BR KF L
TH OL
P R O T E C -B R
F2
CR
EF SN S
OC S N S
TR IP
AC K
1
4
2
3
5
6
F3
F4
7
.
8
9
Y ES
NO
IMOK
PW GD
F1
0
BR KF L
TH OL
P R O T E C -B R
F2
C R
EF SN S
O C SN S
TR IP
AC K
1
4
2
3
5
6
F3
7
.
8
9
Y ES
IMOK
PW GD
F1
0
BR KF L
TH OL
F2
F4
NO
C R
EF SN S
O C SN S
AC K
TR IP
P R O T E C -B R (C O N F IG U R E D A S R E M O T E R T U s )
S C A D A C O N F IG U R A T IO N
P R O P O S E D A T C O R P R & D S U B S T A T IO N
PROTEC – NR
NUMERICAL LINE PROTECTION RELAY
PROTEC-NR IS A MICROPROCESSOR BASED MULTIFUNCTION
NUMERIC RELAY TO PROVIDE DISTANCE PROTECTION FOR
TRANSMISSION LINES
PROTECTION FUNCTIONS
DISTANCE RELAY (PHASE TO GROUND) 21 G
DISTANCE RELAY (PHASE TO PHASE)
21 P
THREE PHASE DIR. OVERCURRENT
67 P
DIRECTIONAL EARTH FAULT
67 N
THREE PHASE OVERVOLTAGE
59
THREE PHASE UNDERVOLTAGE
27
AUTORECLOSER WITH VOLTAGE
AND PHASE CHECK SYNCHRONIZATION
CERTIFICATION AT CPRI (As per IEC 60255 Std.)
1.Accuracy Test
2. 1MHz Burst Disturbance test
3.Insulation Test
4.Mechanical Endurance Test
5.Making and Breaking Capacity
6.Thermal Over Load Test
7.Auxiliary Voltage Variation Test
8.Stability Test
9.Overshoot Test
DESIGN AND DEVELOPMENT OF FILTE BANK
PROTECTION FOR NATIONAL HVDC PROJECT
ADVANTAGES
• INTERCONNECTION OF TWO SYSTEM AT DIFFERENT
FREQUENCY
• FLEXIBILITY IN CONTROL OF POWER FLOW
• REDUCED TRANSMISSION LOSSES
• DAMPINS OUT OSCILLATIONS AND IMPROVE STABILITY
MARGINS
• REDUCED CONDUCTOR SIZE AND RIGHT OF WAY
• REDUCED CORONA AND RADIO INTER-FERENCE
• LIMITING TRANSFER OF FAULT CURRENT
NHVDC PROJECT USES ONE CIRCUIT OF EXISTING
DOUBLE CIRCUIT 220kV AC LINE BETWEEN BARSOOR
AND LOWER SILERU
FIRST STAGE
100kV, 100MW POWER IN THE MONO POLAR MODE USING
EARTH RETURN
SECOND STAGE
± 220kV WITH OPERATION IN THE BIPOLAR MODE
WITH A TRANSMISSION CAPABILITY OF 400 MW.
MAIN EQUIPMENTS OF NHVDC PROJECT
* TWO SERIES CONNECTED 12 PULSE CONVERTERS CONSISTING
OF VALUES AND CONVERTER TRANSFORMER
* SMOOTHING REACTOR IN THE DC CIRCUIT TO REDUCE
HARMONIC CURRENT AND TRANSIENT O/C
* FILTERS ON THE AC SIDE AND ON THE DC SIDE ALSO TO BY
PASS HARMONIC GENERATED AT THE CONVERTERS
* SHUNT CAPACITORS TO COMPLEMENT THE REACTIVE POWER
GENERATED
* CONTROL SYSTEM TO GIVE THE DESIGNED OPERATIONAL
PERFORMANCE OF THE TRANSMISSION SYSTEM
DETAILS OF FIFTH/SEVENTH HARMONIC FILTER
CTF 31 125/1
Q2-X13
12/32 HARMONIC 20 MVAR FILTER BANK PROTECTION AT NHVDC
PROJECT SITE .
(LOWER SILERU)
T.B.No
AZ - 14
AFP
CH
1.31uF
CTF 32
Q2-X12
Differential Protection:
Alarm : 15 A (pri) / 0.12 A (scy) = 0.348 Vp
at ADC
Trip : 30 A(pri) / 0.24A (scy) = 696 Vp
2/1
Capacitor Unbalance Protection:
RH
625 ohms
LH
20.5mH

LL
20.5 ohms
RL
125 ohms
CL
1.26uF
Alarm : 0.150 A(pri) / 75mA (scy)=0.212 Vp
at ADC
Delayed Trip: 0.124 A(pri) / 107 mA (scy)
 0.302 Vp at ADC
Trip: 0.297 A(pri)  0.1485 A(scy)  0.402 Vp
at ADC
Backup Trip:0.594 A(pri) / 0.297 A(scy)=0.804 Vp
at ADC
Resistor/ Reactor Harmonic overload protecion
CTF 33
Q1-X4
150/1
Reactor: Alarm – 64.4 A (pri)
Trip
66.0 A (pri)
Alarm 23.0 A (pri)
Resistor Trip
27.0 A (Trip)
Fundamental Frequency Overload Protection
CTF 34
Q1-X5
125/1
Alarm : 65 A (pri) /0.5 A (scy) =1.47 Vp at ADC
Ktrip : 70 A(pri) /0.55 A(scy)  1.569 Vp
at ADC
High-set: 80 A(pri)/ 0.65(scy)  1.7929 Vp at ADC
5/7 Filter Bank Current at Various Loads
Harmonic Currents
Power Flow
11th
Fund
Third
Harmonic
Currents
Fifth
Seventh
30MW
---
77.9
10
15.8
5.0
40MW
---
75.6
7
22.9
11.2
50MW
---
80.1
15
26.5
12.3
HARMONIC CURRENTS AT 100MW
FILTER
BANK
Fund
Third
Fifth
Seventh Eleventh
Third
Harmonic
57.4
4.2/5.2
---
---
---
5/7
72.9
---
52.4
28.3
---
HP
44.3
---
---
5.2
---
CTF 31
CTF 41
125/1
Q2-X13
CTF 51
125/1
Q1-X6
CH
1.31uF
CH
1.31uF
CTR 42
CTF 32
Q2-X12
2/1
CTR 52
Q1-X11
2/1
2/1
Q1-X7
RH
LH
625
ohms
20.5
mH
RH
LH
1.26uF
20.5
ohms
RL
125 ohms
20.5
mH
150/1
300
mH
LL
CL
RL
1.26uF
125 ohms
20.5 LL
34.6
ohms mH
CL3.36uF
CTF 53
CTF 43
CTF 33
LH
625
ohms
LL
CL
125/1
Q1-X10
Q1-X8
150/1
Q1-X12
400/1
150/1
Q1-X4
CTF 34
Q1-X5
CTF 44
125/1
125/1
Q1-X9
FILTER BANK CONNECTIONS
CTF 54
Q1-X13
125/1
NUMERICAL RELAYS, SCADA
AND
ENERGY METERS
Dr.M.P.SONI
TRANSMISSION & PROTECTION SYSTEM
CORP. R&D DIVISION
NUMERICAL FEEDER PROTECTION
• A multifunction numerical feeder protection relay
developed jointly with SWE, Bhopal
• Realized on low cost, powerful microprocessor
based hardware
• Integrated with the breaker panels of BHEL,
Bhopal and supplied on a commercial basis
• Features and cost comparable with those
supplied by leading relay manufacturers like
ALSTOM, ABB etc
PROTEC – BR
Numerical Feeder Protection Relay
FUNCTIONS:
PROTEC-BR is a microprocessor based
multifunction numeric relay for a distribution
substation feeder.
Three phase o/c relay
Earthfault relay
Thermal Overload relay
Undercurrent protection
Circuit Breaker failure
Detection
Cold load pickup
Latching output contacts
Setting groups
Blocking logic
Event recording & Metering
50 / 51
50N / 51N
49
37
50 BF
86
2
FEATURES
Applicable to substations of various types and ratings
Compact rack
User configurable protection scheme
Online display of parameters and variables
Powerful self diagnostics and failsafe mode of operation
Can be powered with 110 / 220 V dc from station batteries
CPRI certification as per IEC-60255 standards
PROTEC-BRE
NUMERICAL FEEDER PROTECTION RELAY (ENHANCED)
Enhanced version of PROTEC-BR.
Protection Functions
Directional / Non-directional Over current relay
Directional / Non-directional Earth fault relay
Reverse Power Relay
Thermal Overload Relay
Broken Conductor
Breaker Fail protection
Other Functions
Cold-load Pickup
2 Setting Groups
AUTORECLOSER RELAY
PROTECTION FUNCTIONS
• THREE PHASE O/C WITH SELECTABLE
IDMT/DEFINITE TIME CHARACTERISTICS
• EARTH FAULT WITH SELECTABLE IDMT /
DEFINITE TIME CHARACTERISTICS
• COLD LOAD PICKUP LOGIC
• CIRCUIT BREAKER FAILURE
• BROKEN CONDUCTOR
CONTROL FUNCTIONS
• MULTI-SHOT (4) AUTORECLOSER
• EACH SHOT IS INDEPENDENTLY PROGRAMABLE
• CIRCUIT BREAKER CONTROL TWO SETTING GROUPS
Numerical Motor Protection Relay
FEATURES
• LOCKED ROTOR PROTECTION BASED ON IMPEDANCE MEASUREMENT
• THREE PHASE O/C RELAY WITH SELECTABLE IDMT /DEFINITE TIME
CHARACTERISTICS
• EARTH FAULT RELAY WITH SELECTABLE IDMT / DEFINITE TIME
CHARACTERISTICS
• NEGATIVE SEQUENCE RELAY
• THERMAL OVERLOAD PROTECTION
• WIDE SETTING RANGE
• SUITABLE FOR MEDIUM AND LARGE
MOTORS
Z WORLD MODULES
BL2020
BL2120
Low-cost, high performance modules used in protection relays
Up to 28 digital I/O
Up to 11 A/D and 2 D/A
4 serial ports
Optional 512K Flash / 512K SRAM
Onboard relay
FEATURES
Microprocessor
Flash
SRAM
Rabbit 2000T @ 22.1 MHz
256K
128K
Backup Battery
Socketed 3-V lithium coin-type, 265 mA.h, supports RTC and SRAM
Digital Inputs
Digital Outputs
24: protected to ± 36 V DC
16: source/sink 200 mA each, 36 V DC max.
Analog Inputs
11 at 1 MW, 12-bit resolution, ±10 V DC,up to 4,100 samples/sec.
Analog Outputs
Four 12-bit resolution, 0-10 V DC*,update rate 12 kHz
Serial Ports
4 total: two 3-wire (or one 5-wire) RS-232, 1 RS-485, and one 5 V CMOScompatible (programming)
Yes
Real-Time Clock
Five 8-bit timers (four cascadable from the first) and one 10-bit timer
Timers
Watchdog/Supervisor
9-36 V DC, 3 W max.
Power
Operating Temp.
Humidity
Board Size
Yes
-40°C to +70°C
5-95%, non-condensing
4.14'' x 3.41'' x 0.93''
(105 x 87 x 24 mm)
UPGRADATION & MODERNISATION OF 11 KV
SUBSTATIONAT GPX BHEL, BHOPAL
THE CONTROL AND RELAY PANEL PROPOSED TO BE
SUPPLIED WILL HAVE
- PROTECTION PANELS FOR ALL INCOMING AND
THE OUTGOING FEEDERS
- THE CONTROL PANEL WHICH WILL SERVE THE
PURPOSE OF OWS & EWS
THE OWS & EWS COMMUNICATE WITH THE REMOTE
RTUS THROUGH HUBS CONNECTED BY MEANS OF
RS 485 LINK.
THE SCADA WILL HAVE THE FOLLOWING FEATURES
- SINGLE LINE DIAGRAM SHOWING THE STATUS OF
VARIOUS FEEDERS
- BREAKER & ISOLATOR CONTROL
- METERING
- POWER/ ENERGY MEASUREMENT
- ALARM INDICATIONS
- EVENT RECORDS WITH TIME STAMPING AT RTU
LEVEL
- FAULT RECORDS
- SELF DIAGNOSTICS
- PASSWORD PROTECTION FOR CHANGING THE
DATA
- MODBUS PROTOCOL COMMUNICATION BETWEEN
THE MASTER & SLAVES
OWS
EW S
EMS
HUB
.
R S 485 B U S
P R O T E C -B R
1
4
2
3
5
6
F3
F4
7
.
8
9
YE S
NO
IM O K
PW GD
F1
T HO L
E F S NS
O C S NS
T R IP
ACK
.
P R O T E C -B R
F2
CR
0
BRKFL
HUB
1
4
2
3
5
6
F3
F4
7
.
8
9
YE S
NO
IM O K
PWGD
F1
CR
0
BRKFL
T HO L
P R O T E C -B R
F2
E F S NS
O C S NS
T R IP
ACK
1
4
2
3
5
6
F3
F4
7
.
8
9
YE S
NO
IM O K
PWGD
F1
CR
0
BRKFL
T HO L
P R O T E C -B R
F2
E F S NS
O C S NS
T R IP
ACK
1
4
2
3
5
6
F3
F4
7
.
8
9
YES
NO
IM O K
PWGD
F1
T HO L
P R O T E C -B R
F2
CR
0
BRKFL
E F S NS
O C S NS
T R IP
A CK
R S 485 B U S
1
4
2
3
5
6
F3
F4
7
.
8
9
YE S
NO
IM O K
PW GD
F1
CR
0
BRKFL
T HO L
P R O T E C -B R
F2
E F S NS
O C S NS
A CK
T R IP
P ro te c tio n R e la y s & E n e rg y m e te rs
S Y S T E M C O N F IG U R A T IO N
1
4
2
3
5
6
F3
F4
7
.
8
9
YE S
NO
IM O K
PWGD
F1
CR
0
BRKFL
T HO L
P R O T E C -B R
F2
E F S NS
O C S NS
T R IP
ACK
1
4
2
3
5
6
F3
F4
7
.
8
9
YE S
NO
IM O K
PWGD
F1
T HO L
1
4
7
.
CR
0
B RK F L
P R O T E C -B R
F2
E F S NS
O CS NS
T R IP
ACK
IM O K
PW GD
2
3
5
6
F3
9
YE S
8
F1
T HO L
F2
F4
NO
CR
0
BRKFL
E F S NS
O CS NS
T R IP
ACK
• EACH RELAY ACTING AS AN RTU WILL BE COMMUNICATING
WITH THE SCADA THROUGH RS 485 PORT
•
MODBUS COMMUNICATION IN RTU MODE WILL BE EMPLOYED
• A DATA CONCENTRATOR AT THE MASTER END COMMUNICATES
WITH THE RTUS IN THE MULTI DROP MODE ON AN RS 485 BUS
• DATA CONCENTRATOR COMMUNICATES WITH A PC ON AN RS 232
BUS
• THE MMI RESIDES IN THE PC IN THE VB ENVIRONMENT
•
POSSIBILITY OF A SINGLE MULTIDROP LOOP FOR ALL RTUS
BEING WORKED OUT
MODBUS FUNCTIONS
• 01 - READ STATUS OF OUTPUT CONTACTS
• 02 - READ STATUS OF DIGITAL INPUTS
• 03 - READ RELAY SETTINGS
• 04 - READ MEASURED VALUES
• 06 - RESET SINGLE OUTPUT
• 16 - PRESET MULTIPLE OUTPUTS
EVENTS / FAULTS
• CHANGE OF ANY DIGITAL OUTPUT
• CHANGE OF ANY DIGITAL INPUT
• PROTECTION FUNCTION PICKING UP
• SETTINGS CHANGE
• PASSWORD CHANGE
• PROTECTION OPERATION
P R O P O S E D IN S T A L L A T IO N O F 11 k V S W IT C H B O A R D P A N E L S F O R G P X
R E L A Y S O F T H E T Y P E P R O T E C -B R ( 4 b ip o la r a n a lo g in p u ts )
S. NO .
TABLE I
CT
PANEL
No.
FEEDER
P R O T E C T IO N S
P R O T E C T IO N
S E T T IN G S
A N A I/P S
D IG I/P S
D IG O /P S
1.
1.
R ing M ain ( A U X ) 1
4 0 0 /5
1 & 5P10
3 O /C -E /F
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
1 & 5P10
3 O /C -E /F
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
4 M V A T ransfo rm er 1
3 0 0 /5
1 & 5P10
O /C -O /C
W ind ing T em p
A larm , T rip
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
T o w nship N o . 1
4 0 0 /5
1 & 5P10
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
3
Ir, Iy, Ib
3
Ir, Iy, Ib
3
Ir, Iy, Ib
2
B R O ,B R C
2
B R O ,B R C
4
B R O ,B R C
WT
A L A R M /T R IP
5
B R O ,B R C
B ucho lz , O T ,
WT
2
B R O ,B R C
4
B R O ,B R C
WT
A L A R M /T R IP
2
B R O ,B R C
2
B R O ,B R C
2
B R O ,B R C
2
B R O ,B R C
8
4 0 0 /5
3
Ir, Iy, Ib
3
Ir, Iy, Ib
3
Ir, Iy, Ib
2.
2.
H R P T est N o .1
3.
3.
4.
5.
R A T IO
CLASS
3 O /C -E /F
5.
8.
R ing M ain E ast
6.
10.
S T N T ransfo rm er
N o. 1
7.
8.
9.
10.
11.
12.
14.
15.
TRAN S TEST N O . 1
R ing M ain o uter N o . 1
R ing M ain A ux. N o . 2
T o w nship N o . 2
4 0 0 /5
1 & 5P10
3 O /C -E /F
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
5 0 /5
1 & 5P10
O /C -E /F
W ind ing T em p
A larm , T rip
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
3 O /C -E /F
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
Ir,
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
Ir,
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
Ir,
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
Ir,
4 0 0 /5
4 0 0 /5
4 0 0 /5
4 0 0 /5
1 & 5P10
1 & 5P10
1 & 5P10
1 & 5P10
3 O /C -E /F
3 O /C -E /F
3 O /C -E /F
3
Iy,
3
Iy,
3
Iy,
3
Iy,
Ib
Ib
Ib
Ib
8
8
8
8
8
8
8
8
8
S. NO .
PANEL
No.
FEEDER
11.
17.
4 M V A T ransfo rm er
N o. 2
3 0 0 /5
1 & 5P10
12.
18.
H R P T E S T N o .-2
4 0 0 /5
1 & 5P10
13.
20.
S T N T ransfo rm er
N o. 2
5 0 /5
1 & 5P10
14.
22.
L IM T E S T
4 0 0 /5
15.
23.
6 M W D G Inco m er
16.
25.
T rans. T est N o . 2
17.
18.
19.
20.
21.
22.
23.
24.
26.
28.
29.
30.
32
36.
37.
38.
P R O T E C T IO N S
P R O T E C T IO N
S E T T IN G S
A N A I/P S
D IG I/P S
D IG O /P S
3 O /C -E /F
W ind ing T em p
A larm , T rip
3 O /C -E /F
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
3
Ir, Iy, Ib
4
B R O ,B R C
W T A LA R M /T R IP
8
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
2
B R O ,B R C
8
3 O /C -E /F
W ind ing T em p
A larm , T rip
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
3
Ir, Iy, Ib
3
Ir, Iy, Ib
1 & 5P10
3 O /C -E /F
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
6 0 0 /5
1 & 5P10
3 O /C -E /F
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
4 0 0 /5
1 & 5P10
3 O /C -E /F
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
CT
R A T IO
R ing m ain O uter N o . 2
R M E lectro p lating
RM AUX 2
S T N T ransfo rm er
N o. 3
T G /A G T est
H Y D RO TEST LAB
Ind uctio n F urnace
C o ntro l G ear T est
4 0 0 /5
4 0 0 /5
4 0 0 /5
5 0 /5
4 0 0 /5
4 0 0 /5
4 0 0 /5
4 0 0 /5
CLASS
1 & 5P10
1 & 5P10
1 & 5P10
1 & 5P10
1 & 5P10
1 & 5P10
1 & 5P10
1 & 5P10
3 O /C -E /F
O /C -E /F
3 O /C -IE /F
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
3 O /C -E /F
W ind ing T em p
A larm , T rip
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
3 O /C -E /F
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
3 O /C -E /F
3 O /C -E /F
3 O /C -E /F
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
3
Ir, Iy, Ib
3
Ir, Iy, Ib
3
Ir, Iy,
3
Ir, Iy,
3
Ir, Iy,
3
Ir, Iy,
3
Ir, Iy,
3
Ir, Iy,
3
Ir, Iy,
3
Ir, Iy,
3
Ir, Iy,
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
2
B R O ,B R C
W T A LA R M /
T R IP
8
2
B R O ,B R C
4
B R O ,B R C
8
2
B R O ,B R C
2
B R O ,B R C
2
B R O ,B R C
2
B R O ,B R C
4
B R O ,B R C
WT
A L A R M /T R IP
2
B R O ,B R C
2
B R O ,B R C
2
B R O ,B R C
2
B R O ,B R C
8
8
8
8
8
8
8
8
8
8
E L A Y S O F T H E T Y P E P R O T E C -B R E ( 1 1 b ip o la r a n a lo g in p u ts )
T A B L E II
S. NO .
PANE
FEEDER
R A T IO
L N o.
25.
26.
CT
CLASS
RELAY
4.
Inco m er N o . 1 A
8 0 0 /5
1 & 5P10
3 O /C -E /F
REV ERSE PO W ER
6.
C ap acito r b ank N o . 1
3 0 0 /5
1 & 5P10
3 O /C -E /F ,
neutral D isp lacem ent,
U V /O V
27.
9.
Inco m er N o . 2 A
8 0 0 /5
1 & 5P10
3 O /C -E /F
REV ERSE PO W ER
28.
16.
Inco m er N o . 1 B
8 0 0 /5
1 & 5P1 0
3 O /C -E /F
REV ERSE PO W ER
19.
C ap acito r b ank N o . 2
3 0 0 /5
1 & 5P10
3 O /C -E /F ,
neutral D isp lacem ent,
U V /O V
29.
30.
24.
Inco m er N o . 3 A
8 0 0 /5
1 & 5P10
3 O /C -E /F
REV ERSE PO W ER
31.
31.
Inco m er N o . 2 B
8 0 0 /5
1 & 5P10
3 O /C -E /F
REV ERSE PO W E
C ap acito r b ank N o . 3
3 0 0 /5
1 & 5P10
32.
33.
33.
35.
Inco m er N o . 3 B
8 0 0 /5
1 & 5P10
. 3 O /C -E /F ,
neutral D isp lacem ent,
U V /O V
3 O /C -E /F
REV ERSE PO W ER
REV POW
P R O T E C T IO N
S E T T IN G S
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O V 1 2 1 -1 8 7 V
U V 5 5 -9 9 V
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O V 1 2 1 -1 8 7 V
U V 5 5 -9 9 V
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O V 1 2 1 -1 8 7 V
U V 5 5 -9 9 V
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
D IG IT A L IN P U T S :B R O -B R E A K E R O P E N ; B R C -B R E A K E R C L O S E D ; B U C H O L Z -B U C H O L Z
A L A R M ; O T - O IL T E M P .; W T - W IN D IN G T E M P
secs
secs
secs
secs
secs
secs
secs
secs
secs
A N A I/P S
D IG I/P S
D IG
O /P S
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
8
2
B R O ,B R C
8
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
8
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
8
7
Ir, Iy, Ib , O p en d elta
vo ltage, V r, V y, V b
2
B R O ,B R C
8
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
8
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
8
7
Ir, Iy, Ib , O p en d elta
vo ltage, V r, V y, V b
2
B R O ,B R C
8
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
7
Ir, Iy, Ib , O p en d elta
vo ltage,V r, V y, V b ,
8
E L A Y S O F T H E T Y P E P R O T E C -B R E ( 1 1 b ip o la r a n a lo g in p u ts )
T A B L E II
S. NO .
PANE
FEEDER
R A T IO
L N o.
25.
26.
CT
CLASS
RELAY
4.
Inco m er N o . 1 A
8 0 0 /5
1 & 5P10
3 O /C -E /F
REV ERSE PO W ER
6.
C ap acito r b ank N o . 1
3 0 0 /5
1 & 5P10
3 O /C -E /F ,
neutral D isp lacem ent,
U V /O V
27.
9.
Inco m er N o . 2 A
8 0 0 /5
1 & 5P10
3 O /C -E /F
REV ERSE PO W ER
28.
16.
Inco m er N o . 1 B
8 0 0 /5
1 & 5P1 0
3 O /C -E /F
REV ERSE PO W ER
19.
C ap acito r b ank N o . 2
3 0 0 /5
1 & 5P10
3 O /C -E /F ,
neutral D isp lacem ent,
U V /O V
29.
30.
24.
Inco m er N o . 3 A
8 0 0 /5
1 & 5P10
3 O /C -E /F
REV ERSE PO W ER
31.
31.
Inco m er N o . 2 B
8 0 0 /5
1 & 5P10
3 O /C -E /F
REV ERSE PO W E
C ap acito r b ank N o . 3
3 0 0 /5
1 & 5P10
32.
33.
33.
35.
Inco m er N o . 3 B
8 0 0 /5
1 & 5P10
. 3 O /C -E /F ,
neutral D isp lacem ent,
U V /O V
3 O /C -E /F
REV ERSE PO W ER
REV POW
P R O T E C T IO N
S E T T IN G S
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O V 1 2 1 -1 8 7 V
U V 5 5 -9 9 V
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O V 1 2 1 -1 8 7 V
U V 5 5 -9 9 V
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
O V 1 2 1 -1 8 7 V
U V 5 5 -9 9 V
O /C 5 0 -2 0 0 %
E /F 1 0 - 4 0 %
R /P relay 5 – 3
D IG IT A L IN P U T S :B R O -B R E A K E R O P E N ; B R C -B R E A K E R C L O S E D ; B U C H O L Z -B U C H O L Z
A L A R M ; O T - O IL T E M P .; W T - W IN D IN G T E M P
secs
secs
secs
secs
secs
secs
secs
secs
secs
A N A I/P S
D IG I/P S
D IG
O /P S
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
8
2
B R O ,B R C
8
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
8
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
8
7
Ir, Iy, Ib , O p en d elta
vo ltage, V r, V y, V b
2
B R O ,B R C
8
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
8
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
8
7
Ir, Iy, Ib , O p en d elta
vo ltage, V r, V y, V b
2
B R O ,B R C
8
6
Ir, Iy, Ib , V r, V y, V b
2
B R O ,B R C
7
Ir, Iy, Ib , O p en d elta
vo ltage,V r, V y, V b ,
8
3 .3 k V S W IT C H B O A R D P A N E L F O R C O M P R E S S O R IN G P X
R E L A Y S O F T H E T Y P E P R O T E C -B R ( 4 b ip o la r a n a lo g in p u ts )
S.
NO.
34.
PANEL
N o.
1.
C o m p resso r C 1
35.
2.
36.
FEEDER
T A B L E III
C T R A T IO &
CLASS
RELAY
A N A I/P S
D IG
I/P S
D IG O /P S
2 0 0 /5
1 & 5P10
3 O /C -E /F
3
Ir, Iy, Ib
2
B R O ,B R C
8
C o m p resso r N o . 5
2 0 0 /5
1 & 5P10
3 O /C -E /F
3
Ir, Iy, Ib
2
B R O ,B R C
8
3.
C o m p resso r N o . 7
2 0 0 /5
1 & 5P10
3 O /C -E /F
3
Ir, Iy, Ib
2
B R O ,B R C
8
37.
4.
Inco m er N o . 1
8 0 0 /5
1 & 5P10
3 O /C -E /F
3
Ir, Iy, Ib
2
B R O ,B R C
8
38.
5.
Inco m er N o 2
8 0 0 /5
1 & 5P10
3 O /C -E /F ,
3
Ir, Iy, Ib
2
B R O ,B R C
8
39.
6.
C o m p resso r C 2
2 0 0 /5
1 & 5P10
3 O /C -E /F
3
Ir, Iy, Ib
2
B R O ,B R C
8
40.
7.
C o m p resso r N o . 6
2 0 0 /5
1 & 5P10
3 O /C -E /F
3
Ir, Iy, Ib
2
B R O ,B R C
8
41.
8.
C o m p resso r N o . 8
2 0 0 /5
1 & 5P10
3 O /C -E /F
3
Ir, Iy, Ib
2
B R O ,B R C
8
Hercules-EBX
Hercules is a high-integration EBX format (8.00” x 5.75”) CPU based on the
VIA Eden Pentium-3 class processor.
•Complete CPU on one board – processor, video, audio, Ethernet, I/O, data
acquisition
•On-board DC/DC power supply for compatibility with a wide range of power
systems
•Extremely rugged design perfect for mobile and harsh environment
applications
•PC/104+ expansion capability for great flexibility in customizing with addon boards
•Low power consumption: Only 10-12 watts depending on processor speed
Hercules offers the highest level of integration of any EBX format
CPU. This single board contains all the following features
soldered directly on board:
•Processor
•Memory
•Video, including VGA, LCD (lvds), and TV output
•Audio, including 1Wx2 amplifier and SoundBlaster compatibility
•10/100Mbps Ethernet
•Extensive system I/O, including 4 USB ports, 4 RS-232/485
ports, and dual IDE channels
•Data acquisition option, including 32 analog inputs, 4 analog
outputs, 40 digital I/O, 2 counter/timers, 4 pulse-width
modulation outputs, and watchdog timer
•Built-in DC/DC power supply with wide-range 5-28VDC input
and 45W output power
REAL-TIME OPERATING SYSTEM
RTLinuxPro, the hard real-time operating system.
Provides a real-time kernel with Linux running as
a pre-emptable thread.
This design provides superior performance by
providing hard real-time functionality with
guaranteed latencies.
Full TCP/IP with deep support of layered
protocols and wide driver coverage
ENERGY METERS
• DEVELOPMENT OF 3Ph ENERGY METER WITH MDI,
LED DISPLAY, & RTC, BASED ON SAMES ASIC
• DEVELOPMENT OF EPROM BACKED µCONTROLLER
BASED 3Ph LCD METER, WITH IEC 61106 PORT
(IR PORT), RTC & MDI FOR ELECTRONIC ENERGY
METER NON LCD TYPE OF EDN MAKE
METERS - PROJECTS/DEVELOPMENTS
TITLE:DEVELOPMENT OF IrDA PORT FOR SINGLE
PHASE ELECTRONIC ENEGY METER WITH
LCD DISPLAY
DEVELOPED Version 1 WITH AT89S8252 MICON
DEVELOPED Version 2 WITH AT89C2051 MICON
DEVELOPED Version 3 FOR Ph II OF BHOPAL
SCADA PROJECT
STATUS: COMPLETED
• ADDITIONAL FEATURES LIKE
i) CHANGE OF Sl.No, & UID No. THROUGH PDA
ii) IMPLEMENTATION OF RS232/RS485 PORT
IMPLEMENTED AT THE REQUEST OF EDN
METERS - PROJECTS/DEVELOPMENTS
• LATEST VERSION (VERSION 3), BUILT WITH
STATE OF THE ART PIC16F876 MICON
• CONTINUED TECHNICAL
SUPPORT PROVIDED
DURING MANUFACTURE OF
IrDA METER
•COST REDUCTION PROCESS
REQUIRES TIME, BHEL EDN
TO ADDRESS ALL
REQUIREMENTS
IrDA Meter
METERS - PROJECTS/DEVELOPMENTS
JOINT PATENT
• ‘A NOVEL SCHEME FOR RURAL & URBAN
ELECTRIFICATION BASED ON NEW ENERGY METER
MODULES’
METERS - PROJECTS/DEVELOPMENTS
FUTURISTIC TRENDS
GSM TECHNOLOGY FOR PAGING FOR ALL VARIETIES
OF METERS
BLUE TOOTH APPLICATIONS 1Ph/3Ph METERS
MAX DISTANCE 100Mts
SMART CARD ENERGY METER BASED ON THE STATE
OF THE ART CRPTO CARDS,WITH VENDING SOFTWARE
ACTION PLAN
MANUFACTURE OF NUMERICAL RELAYS
ROADMAP FOR METERS
FAULT IDENTIFICATION AND LOCATION IN
TRANSMISSION LINE
BY USING DFT & WAVELET TRANSFORM
 Phase to Ground Faults:
 Positive Sequence Impedance of Line upto the Fault from Relay
VA
Z1 = I + Z -Z I
0
A
0 1
whe
Z1
re
I 0- IA/3
VA - the phase to ground voltage of faulty
line
IA - line current of
phase
A sequence of line impedance
Z1 - +ve
Z0 - zero sequence of line
impedance

Phase to Phase Faults:
• Impedance of the Line upto the Fault from relay:
Z1 =
Va- Vb
Ia- Ib
where
Va - phase to ground voltage of phase A
Vb - phase to ground voltage of phase B
Ia - Line current of phase A
Ib - Line current of phase B
Discrete Fourier Transform:
N-1
X(t) =
[1/N] *
∑ Xm e – (2πkm) / N
m=0
Where k = 0,1,2,3……(N-1)
The Fourier sine and cosine coefficients are
N -1
given by
ak= 2/N ∑ Xm cos(2π km /
m=1
N)
N -1
bk= 2/N ∑ xm sin (2π km / N )
m=1
R.M.S. Value of signal X (t) is given by
X = (1/ √2 ) (√ a2 + b 2 )
k
k
Phasor representation is given by X1 = F1 + j F2
where
F1 = b1/ √2
F2= a1/ √2
 Discrete Wavelet Transform:
• Discrete Wavelet transform (DWT) of the signal X(k) is given by:
DWT(m,n) = ∑ X(k) ψ*a,b (k)
k
Where ψa,b(k) = ψ((k-b)/a)
√a
m dilated version of mother wavelet ψ(k).
Is a scaled and
a is the scale parameter and b is the dilation parameter.
m
m
Choose a = a0 b=na0 b0
k,m,n are integer values.
an
d
For computation efficiency a0 and b0 are set to 2 and 1.
In the present analysis GABOR wavelet has taken as mother wavelet
And is given by the following equation.
-(t2/k)
Ψ(t) = e
(cos(t))
Where k =2,4,16,64------With GABOR wavelet it is easy to find out the frequency
Components of the signal because it is based on exponential
Function like the fourier transform.
Transmission line model System
Transmission Line model System in MATLAB
 Representation of Transmission line model in MATLAB:
I n this model Transmission line is modeled as distributed
Parameters line ,representing a 225-km-long,240-kv ideally
Transmission line with
+ve sequence impedance , ZL(1) = (8.05 +j 110.66) Ω.
Zreo sequence impedance,ZL(0) =(79.19 +j 302.77) Ω.
The Thevenin impedance of area A is Za =(5 +j 27.7) Ω.
The Thevenin impedance of area B is Zb=0.6 +j 9.3) Ω.
The source voltages are EA = 240KV, and Eb = 240
Where δ is the load angle in degrees.
δ
Line Currents for L-G fault at 25km
8000
---------->Currents
6000
4000
phase R
2000
Phase Y
0
-2000 0
50
100
-4000
-6000
--------->Time
150
200
Phase B
----------->X
RX plot for fault at 25 km in DFT
80
70
60
50
40
30
20
10
0
0
100
200
---------->R
300
400
500
RX plot for fault at 25Km in WT
1.00E+02
---------->X
8.00E+01
6.00E+01
4.00E+01
2.00E+01
0.00E+00
0.00E+00 1.00E+02 2.00E+02 3.00E+02 4.00E+02 5.00E+02
-2.00E+01
---------->R
----------->X
RX plot for fault at 50km in DFT
80
70
60
50
40
30
20
10
0
0
100
200
300
----------->R
400
500
RX plot for fault at 50km in WT
1.20E+02
---------->x
1.00E+02
8.00E+01
6.00E+01
4.00E+01
2.00E+01
0.00E+00
0.00E+00 1.00E+02 2.00E+02 3.00E+02 4.00E+02 5.00E+02
---------->R
RX plot for fault at 75km
70
--------->X
60
50
40
30
20
10
0
0
100
200
300
-------->R
400
500
RX plot for fault at 75km in WT
1.20E+02
----------->X
1.00E+02
8.00E+01
6.00E+01
4.00E+01
2.00E+01
0.00E+00
0.00E+00 1.00E+02 2.00E+02 3.00E+02 4.00E+02 5.00E+02
---------->R
-------->Distance(Km)
Fault location in DFT
180
160
140
120
100
80
60
40
20
0
25Km
50Km
75Km
100Km
0
0.05
0.1
-------->TIME(sec)
0.15
Fault location in WT
----------->Distance(Km)
250
200
25 KM
150
50 Km
100
75 KM
50
100KM
0
-50
0
0.05
0.1
----------->time(sec)
0.15