Recombination Models

Download Report

Transcript Recombination Models

QGP Formation Signals and
Quark Recombination
Model
Chunbin Yang
Central China Normal
University Wuhan
Outline
Heavy ion collisions and QGP formation
 Anomalies at RHIC
 Physics ideas in the recombination model
 Fragmentation in the recombination model
 Applications to Au+Au collisions

NCQ scaling of flow v2
 Violation of the scaling

Particle species dependence of Cronin effect
 Discussions

C.B. Yang
Recombination Model
2
time
CYM & LGT
Initial conditions
and interactions
Hot and Dense
P C M & c lu s t. h a d ro n iza tio n
Cooling down
freezing out
NFD
N F D & h a d ro n ic T M
s trin g & h a d ro n ic T M
P C M & h a d ro n ic T M
C.B. Yang
Recombination Model
3
QGP formation signals
Strangeness enhancement
 Suppression of J/Ψ
 Dilepton enhancement
Parton degree of QGP?
 Direct photon
QGP signal from the bulk?
…

Experimental probes:
1) Penetrating probes: “jets” energy loss
2) Bulk probes :Elliptic flow, radial flow
…
C.B. Yang
Recombination Model
4
Evidence for the formation of QGP
Dihadron
Single hadron
Jet quenching
Energy loss of
jets in medium
Yang
NoC.B.suppression
for p spectrum
Recombination Model
5
Hadron production mechanisms

Partons are produced in high energy
collisions like e++e-, e+p, p+p, p+A,A+A

Partons in the final stage of evolution are
converted into hadrons
HOW?
C.B. Yang
Recombination Model
6
Traditional models
 String
formation and break for low p T
 Fragmentation for high p T
The string model may not be applicable
to heavy ion collisions
Fragmentation failed for central Au+Au
collisions
C.B. Yang
Recombination Model
7
Anomalies at intermediate pT
• B/M
p/ ≈1
• v2(pT)
v2(baryons) > v2(mesons)
•Jet structure
not the same as in pp
• Cronin effect
RCPp > RCP
Hard to be understood in traditional models
C.B. Yang
Recombination Model
8
Hadronization by recombination
The colliding system generates quarks
and gluons in the phase space
 The quarks get dressed
 The dressed quarks recombine into
hadrons to the detector

C.B. Yang
Recombination Model
9
Why Recombination?
meson momentum
Parton
distribution
(log scale)
p
p1+p2
p
q
(recombine) (fragment)
higher yield heavy penalty
C.B. Yang
Recombination Model
10
Features
 quark momenta add, higher yield for high
produced pT hadrons
soft parton density depends on medium
 more quarks for baryons than for mesons
 enhanced dependence on centrality for
baryons when thermal partons are involved
C.B. Yang
Recombination Model
11
No anomalies in recombination
 At intermediate pT, aplenty soft quarks are more
important for proton production than for pionsp/1
 For baryons, three quarks contribute to the flow,
while only two quarks for mesons  v2(baryons) >
v2(mesons), quark number scaling
 Soft and semi-soft recombination  Cronin effect
 Process dependence of soft partons different jet
structure in dA and AA
C.B. Yang
Recombination Model
12
Recombination models
• Use just the lowest Fock state
i.e. valence quarks

qqqB
q qbarM
• Gluons converted to quarks first
• The probability for two (three) quarks to form
a meson (baryon) is given by a process
independent recombination function R
C.B. Yang
Recombination Model
13
Different implementations

Duke group etc:
 6-dimensional
phase space
 using Wigner function from density matrix

Oregon group:
 one-dimensional
momentum space
 using phenomenological recombination function
C.B. Yang
Recombination Model
14
Duke approach
E
dN M
3
d P
E
dN B
3
d P
  d

  d

P u
(2 )
3
P u
(2 )
w ( , p)  g e
3


 ,


 ,  ,
 p v ( ) / T

2

 dxw ( R, xP )w( R, x P )w( R, (1  x  x ) P ) |  B ( x, x ) |
 / 2 
2
e

 dxw ( R, xP )w( R, (1  x) P ) |  M ( x) |
2
'
'
'
f (  , )
Low
pT recombination
high pT fragmentation
C.B. Yang
Recombination Model
15
2
Texas/Ohio approach
Texas A&M/Budapest (Ko, Greco, Levai,
Chen)
Monte Carlo implementation (with spatial
overlap)
 Soft and hard partons
 Soft-hard coalescence allowed

Ohio State (Lin, Molnar)

ReCo as a solution to the opacity puzzle
C.B. Yang
Recombination Model
16
Basic formulas in Oregon approach
x
dN
p ,  ,...
dx
C.B. Yang


dx1 dx 2 dx 3
x1
x2
x3
F ( x1 , x 2 , x 3 ) R
p ,  ,...
x1 x 2 x 3
( ,
, )
x x x
Recombination Model
17
Recombination functions
Given by the valon distribution of the hadrons
R
R
 , K ,...
p , n ,...
( y1 , y 2 )  y1 y 2 G Q1Q 2 ( y1 , y 2 )
( y1 , y 2 , y 3 )  y1 y 2 y 3 G Q1Q 2 Q3 ( y1 , y 2 , y 3 )
G Q1Q 2 ( y1 , y 2 )  y 1 y 2  ( y1  y 2  1)
a
b
G Q1Q 2 Q3 ( y1 , y 2 , y 3 )  y1 y 2 y 3  ( y1  y 2  y 3  1)
a
C.B. Yang
b
c
Recombination Model
18
Determining R

R p was determined from CTEQ
 From


the parton distributions in proton
a=b=1.755, c=1.05 at Q2=1GeV2
R  was determined from Drell-Yan
processes
 a=b=0
 See
C.B. Yang
Phys. Rev. C 66, 025204
Recombination Model
19
Fragmentation? Recombination?
Answer: NO FRAGMENTATION
only RECOMBINATION
Fragmentation is not a description of the
hadronization process.
It uses phenomenological functions D(z) that
give the probability of momentum fraction z of
a hadron in a parton jet
C.B. Yang
Recombination Model
20
Fragmentation
D(z)
A
C.B. Yang
q
A
Recombination Model
21
Parton shower
fragmentation
q
Initiating parton
(hard)
C.B. Yang
h
recombination
Parton shower
(semi-hard)
Recombination Model
22
Recombination for fragmentation
Recombination function
known in the
recombination model
Fragmentation function
known from fitting e+eannihilation data
S
V
G
S
G



K
K
BKK
KKP etc
C.B. Yang
Hwa, Phys. Rev. D (1980).
Shower parton distributions
j
S i ( x1 )
j  u, d, s ,u , d , s
i  u , d , s, u , d , s , g
K, L, G, Ls, Gs
Recombination Model
23
Fitted results
C.B. Yang
Recombination Model
24
Shower parton distributions
C.B. Yang
Recombination Model
25
Application to Au+Au collisions
Thermalized low pT (soft) partons
 Hard partons (semi-hard) shower partons
 Three types of recombination for mesons

 thermal
parton & thermal parton
 thermal parton & shower parton
 shower parton & shower parton

Joint parton distribution is not factorizable
C.B. Yang
Recombination Model
26
Parton sources
Thermal parton distribution is assumed
dpT C exp(  pT / T )
Hard parton distributions fi(k) can
be calculated from
 pQCD
 nuclear shadowing
 nuclear geometry
C.B. Yang
Recombination Model
27
Parton sources
Single shower parton distribution is
 dkkf i ( k )
dp
p
j
Si ( p / k )
Joint two (three) shower parton distribution
can also be written down
C.B. Yang
Recombination Model
28
 Spectrum (0-10%)
C.B. Yang
Recombination Model
29
Nuclear modification RAA
dN
AA
p T dp T dyd 
R AA 
NC
C.B. Yang
dN
pp
p T dp T dyd 
Recombination Model
30
p spectrum
C.B. Yang
Recombination Model
31
p/
C.B. Yang
Recombination Model
32
Centrality dependence
C.B. Yang
Recombination Model
33
New physics
Thermal-thermal recombination makes p/
increase from very small value to about 1
at pT3GeV/c
 Thermal-shower recombination plays an
important role
 This recombination can be equivalently
regarded as modification of the
fragmentation functions

C.B. Yang
Recombination Model
34
NCQ scaling
AMPT
model
results: by
For hadron
formation
Scaling
partonicpartons
dof
coalescenc
e ofincov2-:moving
dominant;
meson
quark
v2
( pT )  2  v 2
( pT 2 )
No scaling in quark
v2 : hadronic
baryon
v 2 dominant
( pT )  3  v 2
( pT 3)
dof
=>
A tool to search for the
possible phase boundary!
The
C.B. Yang
beam energy
dependence of the partonic
cross sections will not affect
the v2 scaling argument.
=>
Important for Beam Energy
Scan
program.Model 35
Recombination
NCQ scaling violation
C.B. Yang
Recombination Model
36
Why NCQ scaling ?
φdependence
joint distribution
collinear
Assumptions:
F(p1,p2)=F(p1)F(p2)
Validity of the assumptions?
C.B. Yang
Recombination Model
37
Why NCQ scaling violates?
Because of quark interactions, joint
distributions are not products of quark
distributions
 Recombined quarks not necessarily have
the same momentum
 Fluctuations: large n=1,3 terms appears in
quarks distributions. They contribute to v2
 NCQ at RHIC may be coincident

C.B. Yang
Recombination Model
38
Application to d+Au collisions
Basic formulas the same as for Au+Au
collisions
 Soft parton distribution the same form, T
not temperature but inverse slope
 No jet quenching
 Nuclear shadowing a little different from
that in Au+Au case

C.B. Yang
Recombination Model
39
Pion spectrum
C.B. Yang
Recombination Model
40
Centrality dependence
C.B. Yang
Recombination Model
41
Cronin effect
Enhancement of hadron spectrum in pA
collisions at high pT
Traditional explanation: initial interactions
Many soft collisions before the last hard
one, each gives a kT kick
C.B. Yang
Recombination Model
42
Cronin effect
(
RCP 
(
dN
)
C en tra l
N C pT d pT d y
dN
N C pT d pT d y
)
P erip h era l
Shadowing effect is cancelled partially
C.B. Yang
Recombination Model
43
Puzzles
If Cronin effect is really due to initial
interactions, dilepton spectrum should
show similar effect.
 Experimentally, the effect for dilepton is
very small, no definite conclusion
 Species dependence of the Cronin effect

C.B. Yang
Recombination Model
44
From recombination
Medium density depends on centrality
Medium effects are different in meson
and baryon production
C.B. Yang
Recombination Model
45
Proton spectrum
T different
for different
centralities
C.B. Yang
Recombination Model
46
RCP for proton
C.B. Yang
Recombination Model
47
RCP for p & 
C.B. Yang
Recombination Model
48
Discussions
QGP signal can be found from the bulk
 Hadronization of partons can be described
by ReCo for d+Au and Au+Au collisions
 ReCo naturally explains species
dependence, such as baryon enhancement,
v2 scaling...
 Cronin effect can be interpreted as from final
state interactions

C.B. Yang
Recombination Model
49
Discussions
Combination with other models, such as
hydrodynamics etc, is needed and under
development
 Recombination formulism from pQCD
How to calculate the joint distributions?

C.B. Yang
Recombination Model
50
C.B. Yang
Recombination Model
51