Selenium and Tellurium Chemistry

Download Report

Transcript Selenium and Tellurium Chemistry

Carl Trudel, Literature Meeting
Wednesday, April 11th 2012
About this presentation
 Singh, F. V.; Wirth, T. In Organoselenium Chemistry;
Wiley-VCH Verlag GmbH & Co. KGaA, 2012, p 321-360.
 Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R.
In Selenium and Tellurium Chemistry; Springer Berlin
Heidelberg, 2011, p 251-283.
2
About Me
3
Presentation Schedule
 Some selenium facts
 Stoichiometric reactions
 Selenium as a catalyst
 Carbonylation
 Oxidation (B.-V., epoxidation, selenylation-deselenylation,
alkyne, allylic, alcohol, imine, aniline...)
 Halobromation
 GPx like activity
 Alkylation
 Selenium as a ligand for
 Copper
 Palladium
4
Fun Facts
 Discovered by J. J. Berzelius in 1817.
 Selenium => Selene (moon)
 Chalcogen (O, S, Te)
 Among the 25 least common elements
 0.05 – 0.09 ppm in the earth crust
 Recommended daily intake: 55µg (max 400µg/day)
 >1000µg/day => intoxications
 Brazil nuts, fishes and seafood (oyster and tuna)...
 North American cereals (Beer!)
Berzelius, J. J. Afhandl. Fys. Kemi Mineralogi. 1818, 42.
Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin
Heidelberg, 2011, p 285-302.
5
http://www.passeportsante.net/fr/Solutions/PlantesSupplements/Fiche.aspx?doc=selenium_ps [April 2012]
Other Facts and Nomenclature
 Used in everyday applications
 Glass-making, electronics,
printers, solar cells
 Glutathione peroxidase
enzymes and selenoproteines
 Antioxidants, antitumor,
antimicrobial, antiviral





Se(s) 44.84 $/mol
SeO2 54.59 $/mol
Ph2Se 4 768.33 $/mol
(PhSe)2 3 970,29 $/mol
[mCPBA 120.11 $/mol]
6
www. sigmaaldrich.com [april 2012]
Soichiometric Selenium Chemistry
Reich, H. J.; Cohen, M. L.; Clark, P. S. Org.
Synth. 1988, 50-9, 533-537.
Thompson, D. P.; Boudjouk, P. J. Org. Chem.
1988, 53, 2109-2112.
7
Santi, C.; Wirth, T. Tetrahedron: Asymm. 1999, 10, 1019-1023.
1st Selenium Catalyzed Reaction
 Carbonylation
of aminoalcohols
8
Sonoda, N.; Yamamoto, G.; Natsukawa, K.; Kondo, K.; Murai, S. Tetrahedron Lett. 1975, 16, 1969-1972.
Selenium Based Oxygen Transfer Reagents
 Perseleninic acid
 Hydroxy Perhydroxy Selenane
9
Davis, F. A.; Reddy, R. T. J. Org. Chem. 1992, 57, 2599-2606.
Baeyer-Villiger Reaction
Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer
Berlin Heidelberg, 2011, p 251-283.
10
Baeyer-Villiger Reaction, Perseleninic Acids
Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer
Berlin Heidelberg, 2011, p 251-283.
11
Catalytic Baeyer-Villiger Reaction
Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer
Berlin Heidelberg, 2011, p 251-283.
12
Catalytic Baeyer-Villiger Reaction
13
ten Brink, G.-J.; Vis, J.-M.; Arends, I. W. C. E.; Sheldon, R. A. J. Org. Chem. 2001, 66, 2429.
Catalytic Baeyer-Villiger Reaction
 C3° > C2° > Bn > Ar/H* > C1° > Me
 CF3CH2OH, 20 °C
 Hydrolysis might be an issue
 Important substituent effect
14
ten Brink, G.-J.; Vis, J.-M.; Arends, I. W. C. E.; Sheldon, R. A. J. Org. Chem. 2001, 66, 2429.
Seleninic Acid Epoxidation
 Pioneer work by Sharpless
15
Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689-1697.
Seleninic Acid Epoxidation
 Pioneer work by Sharpless
16
Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689-1697.
Seleninic Acid Epoxidation
 DCM or trifluoroethanol
 Recyclable
perfluorinated solvent
 30 % H2O2 causes
emulsions
 Dihydroxylation
 NaOAc increase yields
Betzemeier, B.; Lhermitte, F.; Knochel, P. Synlett 1999, 489.
Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin 17
Heidelberg, 2011, p 251-283.
Seleninic Acid Dihydroxylation
Sheldon, R. A. et al. J. Chem. Soc., Perkin Trans. 1 2001, 224.
Santoro, S.; Santi, C.; Sabatini, M.; Testaferri, L.; Tiecco, M. Adv.
Synth. Catal. 2008, 350, 2881-2884.
18
Sequential Selenylation-Desenylation
Santi, C. Et al. Chem. Eur. J. 2002, i, 1118.
Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.
19
Sequential Selenylation-Desenylation
Santi, C. Et al. Chem. Eur. J. 2002, i, 1118.
Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.
20
Sequential Selenylation-Desenylation
Santi, C. Et al. Chem. Eur. J. 2002, i, 1118.
Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.
21
Alkyne Oxidation
22
Santoro, S.; Battistelli, B.; Gjoka, B.; Si, C.-w. S.; Testaferri, L.; Tiecco, M.; Santi, C. Synlett, 2010, 1402.
Alkyne Oxidation
23
Santoro, S.; Battistelli, B.; Gjoka, B.; Si, C.-w. S.; Testaferri, L.; Tiecco, M.; Santi, C. Synlett, 2010, 1402.
Alkyne Oxidation
24
Santoro, S.; Battistelli, B.; Gjoka, B.; Si, C.-w. S.; Testaferri, L.; Tiecco, M.; Santi, C. Synlett, 2010, 1402.
Alcohol Oxidation
25
van der Toorn, J. C.; Kemperman, G.; Sheldon, R. A.; Arends, I. W. C. E. J. Org.Chem. 2009, 74, 3085.
Alcohol Oxidation
 Excess of TBHP is to be
avoided
 Presence of water
decrease the selectivity
 Preactivation of the
catalyst shortens
reaction time
van der Toorn, J. C.; Kemperman, G.; Sheldon, R. A.; Arends, I. W. C. E. J. Org.Chem. 2009, 74, 3085.
26
Alcohol Oxidation
27
van der Toorn, J. C.; Kemperman, G.; Sheldon, R. A.; Arends, I. W. C. E. J. Org.Chem. 2009, 74, 3085.
Alcohol Oxidation
28
Ehara, H.; Noguchi, M.; Sayama, S.; Onami, T. J. Chem. Soc., Perkin Trans. 1 2000, 1429.
Allylic Oxidation of Alkene
29
Crich, D.; Zou, Y. Org. Lett. 2004, 6, 775-777.
Allylic Oxidation of Alkene
 Iodoxybenzene (H2O2 less selective)
 Electron-rich alkenes preferentially
 Stable catalyst
 Diselenide is recovered after
Na2S2O5 quench(86 - 92%)
30
Crich, D.; Zou, Y. Org. Lett. 2004, 6, 775-777.
Allylic Oxidation of Alkene
 Oxidation on the more
highly substituted side
 Endocyclic oxidation for
1-substituted
cyclohexene
 krel: CH2 > CH3 > CH
 Follows Bredt’s rule
Crich, D.; Zou, Y. Org. Lett. 2004, 6, 775-777.
Smith, M. B. Organic Synthesis; McGraw-Hill: Boston, MA, 2002; pp. 273-275.
31
Imine Oxidation, Catalytic Hydroxylation
32
Brodsky, B. H.; Du Bois, J. J. Am. Chem. Soc. 2005, 127, 15391.
Aniline Oxidation
Priewisch, B.; Rück-Braun, K. J. Org. Chem. 2005, 70, 2350-2352.
Zhao, D.; Johansson, M.; Bäckvall, J.-E. Eur. J. Org. Chem. 2007, 4431.
33
Oxidation of Bromide Salts
 Br2, Br3+, HOBr
 Seleninic acid
electron rich reacts
faster
Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer
Berlin Heidelberg, 2011, p 251-283.
34
Oxidation of Bromide Salts, Seleninic Acids
 Unknown brominating species
 Electron donating group acceleration
Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer
Berlin Heidelberg, 2011, p 251-283.
35
Oxidation of Bromide Salts, Selenoxide
36
Goodman, M. A.; Detty, M. R. Organomet. 2004, 23, 3016.
Oxidation of Bromide Salts, Seleninic Acid
37
Drake, M. D.; Bateman, M. A.; Detty, M. R. Organomet. 2003, 22, 4158.
Disulfide Formation
 Gluthathione peroxidase (GPx)
 Selenoenzyme (L-selenocysteine)
 Reactive oxygen species
 Neurodegenerative disease
(Parkinson, Alzheimer),
physiological and inflammatory
processes.
 Chalcogen-based catalytic
antioxidants
Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer
Berlin Heidelberg, 2011, p 251-283.
38
GPx Activity
Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer
Berlin Heidelberg, 2011, p 251-283.
39
Catlytic Reduction of Enones
40
Tian, F.; Lu, S. Synlett 2004, 1953.
Catalytic Disulfide Formation
Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer
Berlin Heidelberg, 2011, p 251-283.
41
Diethyl Zinc Addition to Aldehydes
42
Santi, C.; Wirth, T. Tetrahedron: Asym. 1999, 10, 1019-1023. Wirth, T. Tetrahedron Lett. 1995, 36, 7849-7852.
Diethyl Zinc Addition to Aldehydes
43
Santi, C.; Wirth, T. Tetrahedron: Asym. 1999, 10, 1019-1023. Wirth, T. Tetrahedron Lett. 1995, 36, 7849-7852.
Diethyl Zinc Addition to Aldehydes
44
Braga, A. L.; Galetto, F. Z.; Rodrigues, O. E. D.; Silveira, C. C.; Paixão, M. W. Chirality 2008, 20, 839-845.
Diethyl Zinc Addition to Enones
45
Shi, M.; Wang, C.-J.; Zhang, W. Chem. Eur. J. 2004, 10, 5507-5516.
Diethyl Zinc Addition to Enones
46
Shi, M.; Wang, C.-J.; Zhang, W. Chem. Eur. J. 2004, 10, 5507-5516.
Malonate Alkylation
47
Braga, A. L.; Galetto, F. Z.; Rodrigues, O. E. D.; Silveira, C. C.; Paixão, M. W. Chirality 2008, 20, 839.
Malonate Alkylation
48
Braga, A. L.; Galetto, F. Z.; Rodrigues, O. E. D.; Silveira, C. C.; Paixão, M. W. Chirality 2008, 20, 839.
Conclusion
 Selenium compounds are very versatile catalysts
 Different oxidation state allows completely different
reaction pathways
 Little work as been focusing on their strong electron
donating properties as a ligand
 Little success in achieving stereoselective reactions
with catalytic amount of enantioenriched
organoselenium
 Developpement towards its industrial use rather than
fine chemistry
49