Institut d`Optique in ILE

Download Report

Transcript Institut d`Optique in ILE

High-Contrast Ultrabroadband Frontend
Source for High Intensity Few-Cycle Lasers
P. Ramirez1, D. Papadopoulos1,2, A. Pellegrina1,2, F. Druon1, P. Georges1,
2
Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), Palaiseau, France
3 Institut de la Lumière Extrême (ILE), Palaiseau, France
A. Jullien, X. Chen, A. Ricci, J. P. Rousseau, R. Lopez-Martens
Laboratoire d'Optique Appliquée (LOA), ENSTA ParisTech, Ecole Polytechnique,
Palaiseau, France
[email protected]
ICUIL, Watkins Glen, 26th September-1st October 2010
Outline
•Motivation
Ultrashort seed for the OPCPA based Front End
of the ILE 10 PW Apollon
•Experimental setup/results
-HCF spectral broadening/pulse compression
-Crossed polarized wave (XPW)
-Spectral/Efficiency (dispersion)
-FROG/CEP/CR measurements
-Reliability
•Summary/next steps
ICUIL 2010
1
2
The front end of a… front end
•The Apollon 10 PW Front End system
Ultrashort seed source @ 800 nm
Ti:Sapphire based
High CR, CEP stable, sub-10 fs
~100 μJ, 1 kHz @ 800 nm
Non-collinear Optical Parametric
Chirped Pulse Amplification stages
NOPCPA
(BBO, LBO or
BIBO…)
Optical
Synchronisation
HEC-DPSSL
Yb:KGW/YAG/CaF2
High rep. rate Amplifiers
2 J @ 1030 nm
10-100Hz
SHG
ps-ns
1 J @ 515 nm
10-100 Hz
<“10fs”, 100mJ,
@ 800nm
10-100Hz
Pump source @ 515 nm
ICUIL 2010
2
3
The front end of a… front end
•The High CR, CEP stable, sub-10 fs, ~100 μJ, 1 kHz seed @ 800 nm
Ti:Sa system (Femtopower)
CEP stable, CR~10^8
25 fs, 1.5 mJ, 1 kHz
•Commercial system, turn key operation
•Three CEP stabilization loops
•Active pointing stabilization (3x)
Pulse compression
Hollow core fiber (HCF), Ne
CEP preserving
5-10 fs, >50%, >700 μJ
•Well established/flexible technique
•Optimized CM compressor
Nonlinear stage/stability issues
Crossed polarized waves
(XPW)
CEP preserving
5-10 fs, CR>1010, ~100 μJ
•Proved CR enhancement capacity ~105 (ext. pol.)
•Temporal & Spectral cleaning: I(t)XPW∝I3(t) FW
Nonlinear stage/stability issues
•Challenging combination of the sub-systems capacity towards ~5 fs
high energy pulses, reliable seed source
ICUIL 2010
3
4
Hollow core fiber pulse compression
1.4mJ, 25fs
>850 µJ
Ne 0.5-1.5 bar
>750 µJ
HCF pulse compression:
Strehl ratio:81%, Main peak energy:79%
Spectral broadening in the HCF:
Typical input/output spectrum at full input power (1.4 mJ,
1.3 bar Neon, ~60% efficiency)
1.0 HCF 250µm diam, 1m long, 1.3bar Ne:
----Ein=1.3 mJ (~48nm)
----Eout=0.8mJ (~250nm)
0.6
60nm
250 nm
1.0
0.4
0.8
Intensity (a.u.)
Intensity (a.u.)
0.8
0.2
0.0
0.6
4.3 fs
0.4
0.2
500
600
700
800
Wavelength (nm)
900
1000
0.0
-40
-30
-20
-10
0
10
20
30
40
50
Time (fs)
ICUIL 2010
4
5
High energy XPW
Ne 0.5-1.5 bar
~600μJ, ~5fs
~80 μJ, <5fs
~100 μJ, ~220 nm
Energy/Spectrum
FROG/3ω/f-2f
~1012 W/cm2 on the XPW crystal: Vacuum, long focal distance
1 mm BaF2, [011]-cut: max XPW efficiency ~15%
Polarization extinction ratio ~5.10-3: estimated CR improvement ~102
A. Jullien et.al. “High fidelity ultra-broadband frontend for high-power, high-contrast few-cycle lasers,” accepted Appl. Phys. B (08/2010)
ICUIL 2010
5
6
XPW Spectrum/Efficiency vs dispersion
XPW spectrum/Dispersion
XPW efficiency/Dispersion
Compression tolerance <5fs2
Optimum pulse compression (phi0+6)=> Best
efficiency 15% (~20% corrected)=> ~100 μJ
~220nm
ICUIL 2010
6
7
Spatial characterization
After the XPW
(near field)
Incident beam on the crystal
(1.8-2mm diameter)
2mm
ICUIL 2010
2mm
7
8
FROG measurements HCF->XPW
•HCF: 4.4 fs, 0.7 mJ
1.0
FROG retrieved
Hamamatsu calibrated
1.0
6
0.8
3
0.4
2
0.2
1
0.0
0
600
700
800
900
Phase (rad)
4
0.6
500
4.9 fs
4.4fs (compr)
5
Intensity (a.u.)
Intensity (a.u.)
0.8
25
Strehl:79%
Main Peak:83%
20
0.6
0.4
15
Phase (rad)
7
0.2
0.0
10
1000
-30
Wavelength (nm)
-20
-10
0
10
20
30
Time (fs)
•XPW: <5fs, ~100 µJ (80 µJ)
1.0
FROG retrieved
16
Hamamatsu calibrated
0.8
14
0.6
12
1.0
0.8
60
5.8 fs
4.5fs (compr)
Strehl:82%
Main Peak:95% 50
8
0.2
6
0.0
500
4
600
700
800
Wavelength (nm)
900
1000
0.6
30
0.4
20
0.2
10
0
0.0
-30
Phase (rad)
0.4
Phase (rad)
10
Intensity (a.u.)
Intensity (a.u.)
40
-20
-10
0
10
20
30
Time (fs)
ICUIL 2010
8
9
CR measurements
HCF
XPW
•3ωcorrelator, full dynamic range ~1011 (1mJ), reduced spectral acceptance
(~100 fs pulses)
•CR improvement by at least 102 =>HCF CR~108 -> XPW CR~1010-1011 (estimated)
•No compression for the seed=>Glan polar. (ext.105)=> XPW CR ~1012 (expected)
ICUIL 2010
9
10
CEP stability measurements
Int. time : 100 ms (10 shots)
Int. time : 1 ms (single shot)
•Home made f-2f=> feedback to the slow loop of Femtopower (Menlo APS800)
•CEP ~300 mrad=>CEP preservation: (Femtopower alone->~200 mrad)
•Three feedback loops, covered setup, reduced propagation path
ICUIL 2010
10 11
Reliability
•Day to day reproducibility
HCF
XPW
•XPW changes mainly
due to variation of the
HCF output spectrum
almost without effecting
the efficiency
•Easy readjustment (gas
pressure, HCF coupling,
HCF compressor)
•Pulse to pulse rms
stability:
Femtopower: 0.7%
HCF:1.1%
(active pointing stab.)
XPW:2.5%
(more compact, double XPW)
ICUIL 2010
11
12
Summary/next steps
•Spectro-temporal cleaning of high-energy few-cycle pulses by an
optimized vacuum XPW filter
•Generation of high CR, CEP stable, sub-5fs, ~100 μJ (80 μJ)
pulses
•Ideal ultra-broadband seed source for high energy/intensity
systems
…double crystal XPW configuration=> Improved
efficiency/stability
…preliminary low energy NOPCPA experiments=> CEP stability,
max amplified bandwidth, pulses compressibility
…03/2011→ps-NOPCPA (>10 mJ), 2012→ns-NOPCPA (100 mJ)
ICUIL 2010
12 13
Thank you!
14
>50 µJ
@800nm
5-10 ps
>10-20 mJ
@800nm
5-10 ps
NOPCPA (x200-400)
(BBO, LBO or BIBO)
1-2 stages
CM compr.
Ti:Saphir
25 fs @ 800 nm
1.5 mJ/1kHz
Spectral broadening
< 10 fs @ 800 nm
100-200 µJ, kHz
Hollow fiber + XPW
DAZZLER
The Front End: ps/ns strategy
10-20 mJ
<10 fs
@ 800 nm 100Hz
(to 300Hz)
Optical synchronization
Yb:KYW Regen.
~2ns, >2 mJ
@ 1030 nm
~1 mJ
@1030 nm
Picosecond Stage
Regen Amplifier
Thin Disk Yb:YAG
~1.2ns, >200 mJ @ 1030 nm
100Hz (to 300 Hz)
>90 mJ
Compr. 20-30 ps
Stretcher (0.5ns/nm)
@515nm, 100Hz
10-20ps
10-20 mJ
SHG
@800nm
~60%
Nanosecond Stage
Amplifiers (1-2)
MP Yb:KGW (x20)
Yb:CaF2/Yb:YAG
~2 ns,~20 mJ
Diode-pumped
@1030nm
~2 ns, 2 J @ 1030 nm
>20 mJ
10 Hz (to100 Hz)
@1030 nm
>1 J, ~1.5ns
@515nm, 10 Hz
SHG
>50%
Offner stretcher
~1ns, ~30%
3-6 mJ
@800nm
NOPCPA (x20-30)
(BBO, LBO or BIBO)
1 stage
>100 mJ
~1ns (<10fs)
@ 800 nm 10Hz
15
The Front End: Table view setup
800nm
>200nm/<6fs
200μJ/1kHz
1030nm
3nm/30ps
150mJ/100Hz
515nm
1.5nm/20ps
90mJ/100Hz
800nm
>200nm/<6fs
0.8mJ/1kHz
800nm
>36nm/<25fs
1.5mJ/1kHz
1030nm
4nm
4pJ/80MHz
XPW (BaF2)
DAZZLER
1m long 250µm diam
f=1m
Amplitude Systemes
f=1.5m
Stretcher 1:
4nm/700ps
S-pulse Regen 1030nm
Rainbow
MBI Yb:YAG Thin Disk Regen
200-300mJ, >2nm, 2ns
100-300 Hz
1030nm
3nm/2ns
1mJ/1kHz
1030nm
2nm/1.3ns
200mJ/100Hz
1030nm
3nm/2ns
2mJ/1kHz
<7fs, 800nm
~4pJ, 1030nm
FEMTOPOWER
Ti:Sapphire 1.5mJ/25fs
CEP
KEOPSYS YFA
1030nm
12nm
4nJ/80MHz
16
The Front End: Table view
8.4 m
KGW MP1 Amp
20mJ,1030nm
200mJ, YAG regen
Amp 1030nm
YDFA 1030nm
Rainbow
Compressor
Yb:YAG/CaF2
MP2
Thin disk/cryo
Amp 1030nm
3.3 m
DAZZLER
Fiber Compressor
Stretcher
ps-NOPCPA
2mJ KYW
Regen Amp
1030nm
XPW
SHG
Offner
Stretcher
Amplifier
Femtopower
MP3 Amp 2J,
1030nm
SHG
ns-NOPCPA
Output
17
Low energy XPW (in air)
Ne 0.5-1.5 bar
~150μJ, ~5fs
~20μJ, ~230 nm
~16 μJ, ~5fs
•0.5-1 mm BaF2, [011]-cut:max efficiency
•>13% XPW efficiency
•Polarization extinction ration ~5.10^-3
•Estimated CR improvement ~10^2
Energy/Spectrum
FROG
18
Low energy XPW: results
•XWP Spectral filtering
Compression tolerance <5fs2
•XWP pulse compression/cleaning
XPW FROG
1.0
0.8
Intensity (a.u)
HCF FROG
HCF: 5 fs
Strehl:68%
Main Peak:78%
XPW: 5.4 fs
Strehl:70%
Main Peak:91%
0.6
0.4
0.2
0.0
-40
-30
-20
-10
0
Time (fs)
10
20
30
40
19
“Direct” XPW perspective
•Direct XPW sub-10 fs seed
1.5mJ, 25 fs
(56 nm, phase optimized)
~300 µJ
>140 nm, <9.6 fs
Thick BaF2
crystal
vacuum chamber
L
Δt=9.5 fs
Δλ=145nm
TBP:0.68
Strehl:90%
Main peak:95%
•Compact, reliable, single nonlinear stage seed configuration
•Short enough more energetic pulses, High CR, CEP conservative
•Lower coherent CR, rectangular like spectrum
20
z-cut vs holographic cut
L. Canova et.al. “ Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,”
Appl. Phys. Letters (2008) 92.
21
Input dispersion influence
A. Jullien et.al. “Nonlinear spectral cleaning of few-cycle pulses via cross-polarized wave (XPW) generation,” Appl. Phys. B (2009) 96.
22