Experimental methods for the determination of electrical and thermal

Download Report

Transcript Experimental methods for the determination of electrical and thermal

Experimental methods for the determination of magnetic, electrical and thermal transport properties of condensed matter

Janez Dolinšek FMF Uni-Ljubljana & J. Stefan Institute, Ljubljana

Magnetic, electrical and thermal transport properties

- Magnetic susceptibility - Electrical resistivity - Thermoelectric power - Hall coefficient - Thermal conductivity

Introduction

• Why to measure magnetic, electrical and thermal transport properties of solid materials ?

• Ever-present demand for new materials with novel/improved physical-chemical-mechanical properties • Novel materials preparation techniques were developed • High-quality single crystals available • Complex metallic alloys (CMAs) and quasicrystals (QCs) offer unique physical properties or combinations of properties Electrical conductor + thermal insulator Combination of hardness + elasticity+ small friction coefficient • Potential applications in high technology

Complex Metallic Alloys

• Intermetallic compounds • Giant unit cells • Cluster arrangement of atoms • Inherent disorder: • • • Configurational Chemical or substitutional Partial or split occupation Mg 32 (Al,Zn) 49

quasicrystals YbCu 4.5

Ψ-Al-Pd-Mn β-Al 3 Mg 2 λ-Al 4 Mn Al 39 Fe 2 Pd 21 Mg 32 (Al,Zn) 49 Re 14 Al 57 elem. metals ∞ 7448 at. / u. c.

1480 at. / u. c.

1168 at. / u. c.

586 at. / u. c.

248 at. / u. c.

162 at. / u. c.

71 at. / u. c.

<5 at. / u. c.

Quasicrystals

• Discovered in1984 • Thermodynamically stable samples have appeared after 1990 • Well-ordered but nonperiodic solids • Diffraction patterns with non-crystallographic point symmetry Periodic tiling Penrose tiling (quasiperiodic) Diffraction pattern of a decagonal quasicrystal

Sample preparation

Bridgman method Czochralski method Flux-grown method •The first solidification zone •Coexistence of solid and liquid phases Single-crystal is cut in bar-shaped samples

Czochralski method Al-Co-Ni decagonal QC

Experimental methods Magnetization and magnetic susceptibility measurement

  M H

… magnetic susceptibility

SQUID magnetometer 5 T

Experimental methods Measurement of the electrical conductivity

Electrical resistance: R

=

U

/

I Specific resistivity:

 

R l S

PPMS – Physical Property Measurement System 9 T

Experimental methods Thermoelectric effect

Experimental methods Measurement of the thermoelectric power

U

S

T

Thermal conductivity measurement j

q 

P S

    

T

Experimental methods Measurement of the Hall coefficient Hall coefficient

R

H

 1

ne R

H   H

B

j

x

E

y 

B

U I

H  

B d

Magnetization vs. magnetic field Y-Al-Ni-Co o-Al 13 Co 4 Al 4 (Cr,Fe)

M

M

0

L

(  ,

H

,

T

) 

kH

FM contribution linear term

i-Al 64 Cu 23 Fe 13

ferromagnetic component

M

M

1

B

(

g

1 ,

J

1 ) 

M

2

B

(

g

2 ,

J

2 ) 

kH

Curie magnetizations linear term

Magnetic susceptibility Y-Al-Ni-Co i-Al 64 Cu 23 Fe 13 Al 4 (Cr,Fe)

temperature-independent term   

0j

T C j

 

j

Curie-Weiss susceptibility temperature-independent term  (

T

)   0 

T C

  

A

2

T

2 

A

4

T

4 Curie-Weiss susceptibility temperature-dependent correction

o-Al 13 Co 4

Electrical resistivity Y-Al-Ni-Co o-Al 13 Co 4

PTC of the resistivity – predominant role of electron-phonon scattering mechanism (Boltzmann type)

Electrical resistivity Al 4 (Cr,Fe)

 is nonmetallic with NTC slow charge carriers

v τ

L wp

e 2 j

 

Bj g

(  F )

v

 

NBj j 2

j

 

e 2 g

(  F )

L 2 j

 ( 

j j

) pseudogap in  (  ) specific distribution of Fe  (  ) 

A

   1      1  1  2   2 1         1      2  2  2   2 2     

i-Al 64 Cu 23 Fe 13

Thermoelectric power Y-Al-Ni-Co o-Al 13 Co 4 Al 4 (Cr,Fe) i-Al 64 Cu 23 Fe 13

Hall coefficient

• •

R

H values of QCs and CMAs are typical metallic

R

H ’s exhibits pronounced anisotropy • Fermi surface is strongly anisotropic • consists of hole-like and electron-like parts

Y-Al-Ni-Co Al 4 (Cr,Fe) o-Al 13 Co 4

Thermal conductivity

• • Total  is a sum of the electronic  el and the phononic  ph contribution  el is estimated from the Wiedemann-Franz law:  el

=

2 k

B

2 T

(T)/3e 2

• WF law valid when elastic scattering of electrons is dominant

Y-Al-Ni-Co o-Al 13 Co 4 Al 4 (Cr,Fe)

Thermal conductivity i-Al 64 Cu 23 Fe 13

electronic part hopping of localized vibrations  (

T

)   el (

T

)   D (

T

)   H (

T

) long wave phonons (Debye model) •  300K < 1.7 W/mK lower than SiO 2 (2.8 W/mK)

Thank you for your attention !