Transcript WH08.ppt

PHOTOFRAGMENTATION OF THE FLUORENE CATION:
NEW EXPERIMENTAL PROCEDURE USING SEQUENTIAL
MULTIPHOTON ABSORPTION
and
ENERGY-DEPENDENT RATE CONSTANT FOR THE H-LOSS CHANNEL
N.T. Van-Oanh, S. Douin, Ph. Bréchignac
CNRS, Photophysique Moléculaire, Orsay (France)
P. Désesquelles
Astrophysical situation
Competition between fragmentation and
UV radiative cooling by IR emission
Photon
IC
PAH*
Fragment
PAH
Mid-IR
emission
Recent models of the cooling sequence to account for the observed
spectra by
Pech et al (2002)
Verstraete et al (2002)
General Behaviour of Electronic Relaxation
in Aromatic Molecules
 Ultrafast Relaxation Dynamics:
330    33 fs
in cations
1E14
 « Energy Gap Law » satisfied :
knr= A exp [- (E / h*)]
1E13
+
Cations PAH
+
C6H5F
1E12
 Non-adiabatic coupling depends on the
1E11
1E10
k nr
nature of electronic orbitals
Limite
physique
Physical
limit
PAHs neutres
1E9
UltraFast Electronic
Relaxation by
Internal Conversion
from Dn to Dn-1
1E8
1E7
Dérivés polyfluorés
+
du benzène
1000000
• 16  FWHM  160 cm-1
• 330    33 fs
100000
0.5
1.0
1.5
2.0
E (eV)
2.5
3.0
T. Pino, Ph. Bréchignac, E. Dartois, K. Demyk and L. d’Hendecourt, Chem. Phys. Lett. 339, 64 (2001)
D3-D0 Spectrum of Fluorene+-Argon
Å2
All bands have
Lorentzian shapes

Lifetime broadening
UltraFast electronic
relaxation by
internal conversion
from Dn to Dn-1
•16  FWHM  160 cm-1
• 330    33 fs
Principle of the experimental method :
case of Fluorene cation
• Preparation of the cation by R2PI
h1
(after jet cooling)
• Mass spectrometric detection
of fragmentation
internal energy
controlled by FC
CI
h1
D3
k(2h1)
CI
k(h1)
C13H9+
h1
3817cm-1
Neutral
D0
S1
296nm
S0
C13H9+
Cation
PI = 63741cm-1
C13H10
Energy- dependent rate constant
Analysis of the kinetics
C13H10
log(k(E))
+
h 2
k(2h2)
C13H9+
CI
h 2
Dn
CI
k(h2)
C13H9+
h 2
D0
Exp.1: l= 630 nm (1.97 eV), D3 D0
Exp.2: l= 365 nm (3.4 eV), D4 D0
E
h2
2h2
3h2
} A grid of discrete internal energies
Experimental Scheme
-4C
-2C
MCP-Detector
T.O.F.MS
4
5
6
7
temps de vol (ms)
D3
D0
h1
D0
S1
h2
S0
λ= 630nm, D3 D0 I = 4.3mJ
Mass spectrum
0,0
4.1eV
-0,2
C13H10+
Parent-H
3.8 eV
-0,4
Parent
E0=2.1(eV)
-0,6
6,68
6,72
6,76
6,80
6,84
6,88
6,92
H
C13H9+
Planar equilibrium
Experimental results
λ = 323nm, D4 D0
1,0
Parent
Parent-H
0,8
N/N(0)
I = 0 to 1.4mJ
Parent-H
0,6
0,4
0,2
Parent
0,0
0,0
0,4
0,8
Laser energy (mJ)
6,76
6,78
6,80
6,82
6,84
Time of Flight (ms)
6,86
6,88
1.43
1.328
5
1.00
9
0.84
0
0.70
0
0.39
0
1,2
1,6
Data processing
Kinetic scheme : Competition between further photon absorption
and dissociation
at each
step
Complex treatment :
absorption cross sections (badly known)
& fragmentation rates (unknown)
Hypothesis
j, s1 = s2 = …sj
Non Poisssonian character of
the Photon absorption process
IT FAILS !
Determination of Absorption Cross Sections
Leak by other
fragmentation
channels
Too many adjustable parameters !
2 fitting procedures:
• RRK:
kdiss(E) = k0(1-E0/E)g-1
• PTD:
kdiss(E) = k0(1-E0/(E+EZPE))g-1
The Transition Matrix method
n is the number of steps in time
Adjustments
a) Max = 5 photons if h = 1.97 eV
b) Max = 3 photons if h = 3.4 eV
Quality of final fits
Free adjustment of rate constants
From 1 to 5 photons absorbed
Time of Flight shape analysis
Parent -H
Parent
0,27 mJ
h = 1.97 eV
Only the 3-photon excited state contributes to the H-loss
It gives an independent way of evaluating the rate constant:
CONSISTENT !
Distribution of the number of absorbed photons
in the 11 sets of measurements with h = 1.97 eV
The experimental set of rates
k(E) extends over 4 orders of magnitude
Internal energy E* up to about 5x Eb
Exp.1: l= 630 nm (1.97 eV), D3 D0
Exp.2: l= 365 nm (3.4 eV), D4 D0
NOTE: no time-resolution
Calibrated against linear
absorption cross section
measurement (vdW),
with much care on laser
fluence
Jochims et al. (1994)
Dibben et al. (2001)
RRK:
Better at small excess energy
PTD (Photo-Thermo-Dissociation):
EPZ
Summary
Fragmentation
• dissociation channels identified (H-loss dominant)
• rates obtained over an extended energy domain
• allows extrapolation to long times
Perspective
• Phase Space Theory approach,
with anharmonic quantum density of states
• Experiments with other PAHs
More details in :
J. Phys. Chem. A , 164 (2006)
J. Phys. Chem. A , 168 (2006)