Geology of the Precambrian Sangre De Cristo Range of New Mexico

Download Report

Transcript Geology of the Precambrian Sangre De Cristo Range of New Mexico

Geology of the Precambrian Sangre De Cristo Range and Picuris Mountains of New Mexico

 Angelique Northcutt, Garrett Owen, Chris Perdue, Bo Price, Tory Rogers

Where are we going?

Background

-The Sangre de Cristo fault is a west dipping fault in New Mexico -It forms the border between the Sangre de Cristo Mountains and the San Luis Basin.

-The Sangre de Cristo fault extends from poncho Pass, Colorado to near where we’ll be in Taos, NM.

Background

-The section we will be focused on extends from the San Pedro Mesa creek south to the intersection with the Embudo Fault at Rio del Rancho which is about 8 km south of Taos.

-The Sangre de Cristo is part of the more recent Rio Grande Rift. -It is a normal fault that moves less than 0.2 mm/year.

History

-The Basement rocks in this location are Precambrian in age. -The rocks of Colorado and Northern New Mexico are juvenile Volcanic- Plutonic, Ocean Arc rocks that are approximately 1.78 to 1.65 billion years old. -In New Mexico these rocks have been assigned to the Yavapi and Mazatzal provinces.

- These Rocks were deformed during 2 major Proterozoic orogenies.

History

-First the Colorado Orogeny has a U-Pb date that goes through 1.78-1.75 Ga.

-It was a prolonged thermotectonic episode resulting from collision, subduction, and continued convergence.

-This occurred along the paleosuture known as the Cheyenne Belt along the Archean Wyoming Province.

History

-Second the Berthoud Orogeny has a U-Pb date that started 1.45 Ga and went through 1.40 Ga. -This was a thermo tectonic episode that produced NE trending ductile shear zones and related folds. -The mechanism powering this Orogeny was granitic plutonism. -This Orogeny also formed many high grade metamorphic rocks through generally pervasive metamorphism.

Pre-Cambrian rocks

-Isoclinal folding -East-west strike -Southward dips (60-70 degrees)

Folds

-2 major anticlines and 2 major synclines -Wave lengths 1 to 2 miles -Doubly plunging (~20-30 degrees)

Folds

Pilar Anticline -Widely displaced by the Pilar-Vadito tear fault -Slightly overturned to the north -Axial plane dipping south (60 degrees) Hondo Syncline -Overturned -Axial plane dips south (60-70 degrees) -Eastern segment plunges 30-40W -Western segment plunges 10-20E

Folds

Copper Hill Anticline -Axial plane plunges 30-35W -N85W, 50W -Can be traced 9 miles east of Copper Hill Harding Syncline -Structural detail is obscure -Strikes E-W -Plunge ranges 25-17NE

Jointing

-Abundant/wide variability in pre-Cambrian rocks -3 predominant sets -N10W to N10E (almost vertical) -N50W to N70W (dipping steeply NE) -N20E to N40E (dipping steeply SE)

Jointing

-N-S joints followed almost exclusively by copper ore-bearing quartz veins -Mineralization after granitic intrusion -Harding pegmatite estimated 800myo -Indicates time of jointing

Stretched Pebbles

-Conglomerate of the Vadito -Pebbles have average axial ratio of 1:2:3 -Shortest axis perpendicular to foliation -Some wedge-like shaped with apex oriented down the lineation -Pebbles in close contact have greater impacted shape

Three Major Fault Systems

Picuris-Pecos fault system

Embudo transfer fault

Sangre de Cristo fault zone

Picuris-Pecos Fault System

84 km long fault system consisting of five parallel fault zones: • Picuris-Pecos Major crustal boundary juxtaposing two Proterozoic rock sequences: the Hondo Group and the Miranda Granite • La Serna -East-down fault separating Miranda Granite and Picuris Formation • Miranda -North-striking strike slip fault • McGaffey -West-down branching fault splay • Rio Grande del Rancho -Kilometer-wide, west-down fault zone

Embudo Fault Zone

• Sinistral, antithetic transfer zone which forms border between the Española Basin and the San Luis Basin • 64 km long fault thought to be part of Jemez lineament • Fault consists of two sections based on reversal of throw • Strike of N60E • Sinistral net slip rate of .15 mm/year

Sangre de Cristo Fault Zone

• West-dipping normal fault that forms border between the Sangre de Cristo Mountains and the San Luis Basin • Beginning of Sangre de Cristo Fault forms the terminus of the Embudo fault • The southern area of the fault is divided into five sections. From north to south, the sections are: - San Pedro Mesa - Urraca - Questa  The northern three strike north-south - Hondo  Strikes N30W - Cañon  Strikes N20E

Aerial View of Faults in Taos Region

Pre-Cambrian Formations:

The Hondo Group

-The Pilar Formation -The Riconada Formation -The Ortega Formation •

The Vadito Formation

The Ortega Formation

• Estimated 2,500 ft. thick • Gray to very light gray in color • Mostly Quartzite • Thin beds of sillmanite - kyanite gneiss • Bands of schistose with muscovite • Tourmaline

Riconada Formation -Richly micaceous foliated rocks -Consists of four distinct beds:

• Andalusite-biotite Hornfels bed Muscovite and quartz matrix that contains biotite, nodular masses of quartz and andalusite • Staurolite Schist and Gneiss Bed Soft and light gray in color micaceous matrix speckled with biotite, contains staurolite crystals Staurolite Andalusite

The Riconada Formation

• Quartzite bed – Grayish white in color, contains glassy- white and translucent quartzite • Muscovite-quartz-biotite-garnet Phyllite bed Muscovite rich phyllite containing garnet crystals and biotite, sheen that ranges from pearly gray to greenish

Pilar Phyllite Formation

• Estimated 2,300 ft. thick • Black to gray-black in color with a gray sheen • Contains muscovite flakes • Quartz veins • Limonite masses

Vadito Formation

• Occupies the southern 1/3 of the Picuris Range -Named after the village of Vadito • Best outcrops come from within a one-mile radius of the Harding Mine -Total thickness: 4,500 feet • Comprised of a Lower Conglomerate Member and an Upper Schist Member

Marquenas Formation

• Total thickness: ~ 2,000 feet • Composed of Quartz Conglomerate and Quartzite, Felsites and Meta-andesites • Quartz conglomerate outcrops in a quarter-mile wide east-west belt near Picuris Canyon but grow sparser farther east • Composed of gray coarse to pebbly Quartzite with fine-grained micaceous quartzite matrix • Thickness of the Quartz Conglomerate: 500 - 1,000 feet

Marquenas Formation

• Felsites occur to the east and west of the canyon but appear to pinch out to the west along the Ortega-Vadito contact • Composed of meta-rhyolite that grades into coarser granite representing partial replacement by granite • Gray-white to pink-white and has a dense felsitic texture with micas and feldspars present • Thickness of the Felsites: 50-100 feet

Marquenas Formation

• Meta-andesites occur abundantly to the south and east of the Harding mine • Greenish-gray to gray-black in color • Hornblende occurs in all of these rocks as prisms and give the variable darkness in color to them • Rocks show strong pleochroism in thin-section.

• Represent thin-layered volcanic material of dacitic and andesitic composition

Schist Member

• Consists of a schist and phyllite composed of quartz-muscovite and a quartz-biotite granulite • The schist is similar to the underlying conglomerate quartzite with more densely disseminated flakes of muscovite • Phyllite is a lustrous, silvery-gray rock with stubby biotite porphyroblasts • Granulite is fine-grained, sandy, and crudely foliated with micaceous surfaces with flakes of biotite • Thickness: At least 1,250 feet and no more than 2,500 feet

Amphibolites

• The amphibolites found in the Vadito Formation are split into two zones based on lithology: -One of the zones occurs in the Lower Conglomerate and one occurs in the Upper Schist • These amphibolites show effects of intrusion by granitic and pegmatitic magma • Thickness: 750 feet in Lower Conglomerate, and 1,250 feet in Upper Schist

Questions?