Diapositiva 1

Download Report

Transcript Diapositiva 1

PBR research activity
at InfoCom
F. Colone, C. Bongioanni, A. Lauri, R. Cardinali, P. Lombardo
Outline
 Signal software simulator
 Disturbance removal on the
surveillance signal
 Multipath removal on the
reference signal
 Wideband prototypes development
 Acquisition campaigns & experimental results over the single
FM radio channels
 The multi-frequency approach
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
2
FM radio signal simulator
silenzio
MatLab
SW GUI
voce
heavy metal
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
3
Processing algorithms (I)
REFERENCE
CHANNEL
SURVEILLANCE
CHANNEL
Surv
Ref
Bistatic Velocity [m/sec]
It is likely that disturbance contributions
mask the target echo even in the presence of
large Range-Doppler separation.
-400
0
-300
-5
-200
-10
-100
-15
0
-20
100
-25
200
-30
300
-35
0
20
40
60
80
100
120
Relative Bistatic Range [km]
140
160
-40
CROSS
CORRELATION
Doppler Shift
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
4
Processing algorithms (II)
Adaptive cancellation filters have
to be designed to remove the
undesired contributions
Extensive Cancellation Algorithm (ECA):

min s surv  X α
α
REFERENCE
CHANNEL
Ref
SURVEILLANCE
CHANNEL
CANCELLATION
Surv’=Surv-Ref·α
Surv
X  B  Λ  P S ref
 Λ 1 S ref
CROSS
CORRELATION

Least Square (LS)
approach
S ref
Λ1S ref  Λ P S ref 
phase shift corresponding
to the P-th Doppler bin

S ref  s ref _ L
D 2s ref _ L
Ds ref _ L
Surv’
Ref
2

D K 1s ref _ L

delay of 1 range bin

α  XH X

1
XH s R
Doppler Shift
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
5
ECA performance
Ambiguity Function [dB]
Sketch of the Scenario
-400
-400
T6
-300
-200
Bistatic Velocity [m/sec]
Bistatic Velocity [m/sec]
T2
T5
Strong targets
-100
0
T3
Weak targets
100
T1
200
Clutter Spikes
-300
-5
-200
-10
-100
-15
0
-20
100
-25
200
-30
300
-35
Direct Signal
300
0
T4
400
0
20
40
60
80
100
Relative Bistatic Range [Km]
120
140
20
40
60
80
100
120
Relative Bistatic Range [km]
Uscita detection
140
160
-40
-400
160
-300
 only the strong targets are correctly detected
 some false alarms arise at short ranges due to:
-the disturbance residuals around Doppler zero
-the sidelobe structures of the strongest targets
Bistatic Velocity [m/sec]
-200
-100
0
100
200
300
0
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
20
40
60
80
100
Relative Bistatic Range [km]
120
140
160
6
ECA Batches
Bistatic Velocity [m/sec]
Ambiguity Function [dB]
-400
0
-300
-5
-200
-10
-100
-15
0
-20
100
-25
200
-30
300
-35
0
20
40
60
80
100
120
Relative Bistatic Range [km]
Uscita detection
20
40
140
160
-40
-400
-300
 width of the notch significantly increased  improved
disturbance cancellation and target detection
 the detection of the weakest targets is prevented by the
masking effect of the sidelobe structures of the
strongest targets
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
Bistatic Velocity [m/sec]
-200
-100
0
100
200
300
0
60
80
100
Relative Bistatic Range [km]
120
140
160
7
ECA Batches & Stages
Uscita detection
Evaluation of: PSLR,
PNFR, Range and
Doppler resolution
-5
-300
-200
-10
-200
-100
-15
0
-20
100
-25
200
-30
200
300
-35
300
0
N
Y
CFAR threshold
Bistatic Velocity [m/sec]
-400
PSLR<PNFR
Constant threshold
-300
Evaluation of PNFR
Bistatic Velocity [m/sec]
2D CCF
100
0
-300
-5
-300
-200
-10
-200
-100
-15
0
-20
100
-25
200
-30
200
300
-35
300
20
40
60
80
100
120
140
160
Ambiguity Function (20log10) - Target Cancellation Stage 2
Relative Bistatic Range [km]
-5
-300
-200
-10
-200
-100
-15
0
-20
100
-25
200
-30
200
300
-35
300
140
160
120
140
160
0
20
40
60
80
100
Uscita
detection
Relative
Bistatic
Range [km]
120
140
160
0
20
40
60
80
100
Relative Bistatic Range [km]
120
140
160
-40
-300
60
80
100
120
Relative Bistatic Range [km]
60
80
100
Relative Bistatic Range [km]
Uscita detection
100
-400
40
40
0
0
20
20
-100
-400
0
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
0
-400
0
Detection results
-40
-100
0
Mask updating
ECA-B (current mask)
20
40
60
80
100
120
140
160
Ambiguity Function (20log10) - Target Cancellation Stage 1
Relative Bistatic Range [km]
Bistatic Velocity [m/sec]
2D CCF
-400
Bistatic Velocity [m/sec]
2D Auto-AMB
0
-40
Bistatic Velocity [m/sec]
ECA-B (K,P=0)
Bistatic Velocity [m/sec]
Ambiguity Function [dB]
-400
-100
0
100
8
Experimental system at UCL
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
9
INFOCOM Advanced Algorithms on UCL data
-400
-400
1
2
3
4
5
6
Bistatic Velocity [m/s]
-200
-100
0
100
Bistatic Velocity [m/s]
1
2 -300
3
4
-200
5
6
-100
-300
Bistatic Velocity [m/s]
FM Channel 91e3
FM Channel 91e3
FM Channel 91e3
-400
0
100
-200
-100
0
100
200
200
200
300
300
300
400
0
20
40
60
80
100
Relative Bistatic Range [Km]
120
140
400
160 0
20
40
60
80
100
Relative Bistatic Range [Km]
120
140
ECA
ECA-B
only the strongest target
plot sequence is correctly
detected while only few
plots are detected for other
possible target tracks
many reasonably complete
plot sequences are observed,
while on others only few
plots are detected
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
1
2
3
4
5
6
-300
400
160
0
20
40
60
80
100
Relative Bistatic Range [Km]
120
140
160
ECA-B&S
the completeness of the
previously detected plot
sequences is increased and an
additional quite complete
sequence appears
10
Impact of multipath in the Reference channel (I)
2D-CCF in the presence of multipath
in the Reference signal
[DMR=5 dB , delay 9 samples and phase shift 200°]
-250
-250
0
0
-200
-200
-5
-5
-150
-150
-10
-10
-100
-100
-15
-50
-20
0
Doppler [Hz]
Doppler [Hz]
2D-CCF in the absence of multipath
in the Reference signal
-50
0
50
-15
projection of the Ref
channel multipath
echo on the Surv
signal
-25
50
-20
-25
-30
100
-30
100
150
-35
150
-35
200
200
-40
-40
0
0.2
0.4
0.6
0.8
Time [msec]
1
-45
0
0.2
0.4
0.6
0.8
1
-45
Time [msec]
-Target detection becomes unfeasible
-The cancellation capability of the ECA is seriously limited
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
11
Impact of multipath in the Reference channel (II)
ECA Disturbance Cancellation Capability on the Surveillance channel
Perdite di cancellazione con una replica ( DMR=5 dB )
Reference channel affected by a single
multipath replica with DMR=5 dB.
Perdita
di cancellazione
[dB]
Loss [dB]
Cancellation
- as the delay of the multipath
echo increases, its impact on
the disturbance cancellation
capability increases;
- this impact is higher when
the phase shift is about .
40
30
20
10
0
300
10
8
200
6
4
100
Phase replica
shift [deg]
Sfasamento
[deg]
0
2
0
Ritardo[samples]
replica [tappi]
Delay
Proper strategies should be used to remove the multipath on the Ref signal
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
12
Multi-Dimensional CMA
N 1 M 1
0
+
w0,0

sref,0[k]
w0,1
T
+

sref,0[k-1]
w0,2
T
sref,0[k-2]
+
1
w1,0

sref,1[k]
w1,1
T
w1,2
T
wN-1,0

sref,N-1[k]
wN-1,1
T
T

wN-1,2
T

sref,N-1[k-2]
y[k ]   wn,m [k ] sref ,n [k  m]
n0 m0

wn,m [k  1]  wn.m [k ]  [k ]sref
,n [k  m]
sref,0[k-M+1]
 [k ] ˆ { y[k ]  1}  y[k ]
2
+
w1,M-1
T

+
y[k]
sref,1[k-M+1]
+

sref,N-1[k-1]

sref,1[k-2]
+
N-1
w0,M-1
+

sref,1[k-1]

+
+
wN-1,M-1
T

sref,N-1[k-M+1]
N=1  Time CMA (T-CMA)
M=1  Space CMA (S-CMA)
N>1 & M>1  Space-Time CMA (ST-CMA)
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
13
ST-CMA performance
T-CMA
-250
ST-CMA
-250
-200
-200
-150
-150
-100
-100
-5
Doppler [Hz]
Doppler [Hz]
-10
-50
0
50
-15
-50
0
-20
50
-25
100
100
-30
150
150
-35
200
200
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
DMR1=5 dB , Time
DMR2=[msec]
5 dB , 1 = 10/fc ,  = 0°
0.9
0.1
0.3
0.4
0.5
0.6
Time [msec]
0.7
0.8
0.9
1
DMR1=5 dB , DMR2= 5 dB , 1 = 10/fc ,  = 0°
10
Perdita
di cancellazione
Cancellation
Loss [dB][dB]
60
Perdita di cancellazione
Cancellation
Loss [dB][dB]
0.2
1
50
40
30
20
10
0
8
6
4
2
0
-2
300
10
8
200
6
4
100
a
SfasamentoPhase
2 replica
[deg]
shift
[deg]
0
2
0
2a replica
[tappi]
DelayRitardo
[number
of samples]
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
300
10
8
200
6
4
100
SfasamentoPhase
2a replica
[deg]
shift
[deg]
0
2
0
DelayRitardo
[number
of samples]
2a replica
[tappi]
14
INFOCOM Prototypes development
Reference
Antenna
1st Nyquist
Dual channel
2nd Nyquist
A/D Converter
Direct RF sampling
FM Band
0
Fs/2
Fs
(88 ÷ 108 MHz)
Surveillance
Antenna
External
Clock
Source
RF Amp.
IF Amp.
Down Conv
Low-pass
MIXER
R
F
Filter
I
F
A/D
Converter
Signal down-conversion &
baseband sampling
L
O
R
F
Dual channel
I
F
RF Amp.
Down Conv
IF
Amp.
Low-pass
Filter
MIXER
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
15
INFOCOM Acquisition campaigns
 Riva di Traiano (Civitavecchia, ~70 Km north of Rome)
 Reference antenna steered toward Monte Argentario (pointing north-west)
 Surveillance antenna pointed at about 180° (standard arrival and departure routes
to and from Leonardo Da Vinci Airport in Fiumicino)
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
16
Experimental results over single FM radio channels
400
400
-400
-400
-300
-300
15
15
410
-200
49
413
396
302
331
100
429
316
402
428
361
0
302
331
392
429
316
10.05.42
428
314
200
422
315
287
300
422
10.05.42
10.06.05
10.06.05
10.06.29
10.06.29
400
0
20
40
60
80
100
120
140
160
180
400
200
0
20
40
60
80
Relative Bistatic Range [Km]
120
140
160
180
93.8 MHz
400
-400
-400
-300
-300
15
200
413
Bistatic Velocity [m/s]
396
302
331
100
429
316
402
300
396
0
302
331
392
100
429
316
422
315
287
300
10.05.42
428
314
200
287
364337
361
402
315
297
425
428
314
413
-100
364337
361
0
196
49
297
425
200
406
196
-100
392
410
-200
406
49
• not the same target sequences
are clearly visible on the
different channels
400
15
410
-200
Bistatic Velocity [m/s]
100
Relative Bistatic Range [Km]
89.8 MHz
• only on some of the
considered channels some
reasonably complete target
plot sequences are observed
100
315
287
297
364337
396
402
314
300
413
425
-100
Bistatic Velocity [m/s]
Bistatic Velocity [m/s]
364337
361
0
196
49
297
425
200
406
196
-100
392
410
-200
406
422
10.05.42
10.06.05
10.06.05
10.06.29
• missed detections are often
coincident with general
degradation of the
instantaneous characteristics
of both the transmitted
waveform and the e.m.
environment
10.06.29
400
400
0
20
40
60
80
100
120
140
160
180
200
0
20
40
60
Relative Bistatic Range [Km]
92.1 MHz
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
80
100
120
140
160
180
200
Relative Bistatic Range [Km]
94.3 MHz
17
The multi-frequency approach
 The joint use of multiple frequencies can give really improved detection performance
 Range-Velocity maps for the different FM radio channel can be incoherently summed
aiming at exploiting the coincidences of detections over different channels while
reducing the effects of the single waveform characteristics
0
1
n
N-1
xm=f(z0,m, z1,m, …, zN-1,m)
 Possible integration strategies: Decentralized & Centralized
L/N
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
SUM
MAX MIN
18
Performance comparison
400
400
-400
-400
-300
-300
15
15
410
-200
413
Bistatic Velocity [m/s]
Bistatic Velocity [m/s]
396
302
331
100
429
316
402
200
300
302
331
392
100
429
316
422
315
287
300
10.05.42
428
314
200
287
SUM
(N=3)
396
0
402
315
297
364337
361
428
314
413
425
-100
364337
361
0
196
49
297
425
-100
392
406
196
49
93.8
MHz
410
-200
406
422
10.05.42
10.06.05
10.06.05
10.06.29
10.06.29
400
400
0
20
40
60
80
100
120
140
160
180
200
0
20
40
60
Relative Bistatic Range [Km]
80
100
120
140
160
180
200
Relative Bistatic Range [Km]
 R1
 R2
 R3
1
1
1
0.9
0.9
0.9
0.8
0.8
0.8
0.7
0.7
0.7
0.6
0.6
0.6
SUM
MAX
0.5
0.4
0.3
0.2
SUM
MAX
0.5
0.4
0.3
0.2
SC2
0.1
MAX
SC3
0.5
0.4
0.3
0.2
SC2
0.1
SC1
SC1
0
SUM
SC2
DEC
DEC
0.1
Detection Rate
Detection Rate
Average results
over 300
consecutive
acquisitions
Detection Rate
DEC
0
0
MFC2 MFC3 MFC4a MFC4b MFC5
MFC2 MFC3 MFC4aMFC4b MFC5
MFC2 MFC3 MFC4a MFC4b MFC5
Multi-Frequency Configurations
Multi-Frequency Configurations
Multi-Frequency Configurations
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
19
List of publications
[1] F. Colone, D. W. O'Hagan, P. Lombardo, C. J. Baker "A multistage processing algorithm for
disturbance removal and target detection in Passive Bistatic Radar" , Trans. on Aerospace and
Electronic Systems, in print.
[2] P. Lombardo, F. Colone, C. Bongioanni, “Impact of reference signal quality on passive radar
performance”, Aerospace Conference 2008.
[3] P. Lombardo, F. Colone, C. Bongioanni, “Comparison of different approaches for a MultiFrequency FM Based Passive Bistatic Radar”, SET-125 Symposium on Sensors and Technology for
Defence Against Terrorism.
[4] P. Lombardo, F. Colone, C. Bongioanni, A. Lauri, T. Bucciarelli, “PBR activity at INFOCOM:
adaptive processing techniques and experimental results”, special session alla Radar Conference
2008.
[5] C. Bongioanni, F. Colone, P. Lombardo, “Performance Analysis of a Multi-Frequency FM Based
Passive Bistatic Radar”, student session Radar Conference 2008.
[6] F. Colone, C. Bongioanni, P. Lombardo, “Track initiation for FM-based passive radar using multifrequency and multi-temporal integration”, 5th Multi-National Conf. on Passive Covert Radar (Old
Crows), 13 – 15 November 2007, Shrivenham, UK.
[7] F. Colone, D.W. O’Hagan, P Lombardo and C.J. Baker, “A multistage processing algorithm for
disturbance removal and target detection in Passive Bistatic Radar”, 5th Multi-National Conf. on
Passive Covert Radar (Old Crows), 13 – 15 November 2007, Shrivenham, UK.
[8] D.W. O’Hagan, F. Colone, P. Lombardo and C.J. Baker, “An experimental Passive Bistatic Radar
(PBR) System”, 5th Multi-National Conf. on Passive Covert Radar (Old Crows), 13 – 15 November
2007, Shrivenham, UK.
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
20
List of publications
[9] R. Cardinali, F. Colone, P. Lombardo, O. Crognale, A. Cosmi, “Multipath cancellation on reference
antenna for passive radar which exploits FM transmissions”, The IET International Radar
Conference (Radar07), 15-18 October 2007, Edinburgh (UK).
[10] A. Lauri, R. Cardinali, F. Colone, P. Lombardo, “A geometrically based multipath channel model
for passive radar”, The IET International Radar Conference (Radar07), 15-18 October 2007,
Edinburgh (UK).
[11] D.W. O’Hagan, F. Colone, C.J. Baker, H.D. Griffiths, “Passive Bistatic Radar (PBR) Demonstrator”,
The IET International Radar Conference (Radar07), 15-18 October 2007, Edinburgh (UK).
[12] F. Colone, C. Bongioanni, A. Lauri, R. Cardinali, P. Lombardo, “Passive radar prototypes for
multifrequency target detection”, GTTI 2007 Meeting, Rome June 18-20, 2007.
[13] C. Bongioanni, F. Colone, S. Bernardini, L. Lelli, A. Stavolo, P. Lombardo, “Passive radar
prototypes for multifrequency target detection”, Signal Processing Symposium 2007, Jachranka
(Poland), 24-26th May 2007.
[14] R. Cardinali, F. Colone, C. Ferretti, P. Lombardo, “Comparison of clutter and multipath
cancellation techniques for passive radar”, IEEE Radar Conference 2007, Boston, Massachusetts,
USA, 17 - 20 April 2007.
[15] A. Lauri, F. Colone, R. Cardinali, C. Bongioanni, P. Lombardo, “Analysis and emulation of FM
radio signals for passive radar”, IEEE Aerospace Conference 2007 , Big Sky, Montana (MT), USA,
March 3-10, 2007.
[16] F. Colone, R. Cardinali, P. Lombardo, “Cancellation of clutter and multipath in passive radar
using a sequential approach”, IEEE 2006 Radar Conference, Verona (NY), USA, April 24-27, 2006,
pp. 393-399.
F. Colone, C. Bongioanni, A, Lauri, R. Cardinali, P. Lombardo
“PBR research activity at INFOCOM”
21