Transcript TES - INRiM

Mauro Rajteri

Divisione OTTICA

Photon

: also called

Light Quantum

, minute energy packet of electromagnetic radiation. The concept originated (1905) in Einstein’s explanation of the photoelectric effect (enc. Brittanica)

Photon counting:

average count rate  intensity of the light beam but actual count rate fluctuates from measurement to measurement.

Mauro Rajteri, 12/06/2013 Panoramica INRIM 2/46

Coherent light & constant intensity:

3.1

Mauro Rajteri, 12/06/2013 Panoramica INRIM 3/46

Mauro Rajteri, 12/06/2013 Panoramica INRIM 4/46

Mauro Rajteri, 12/06/2013 Panoramica INRIM 5/46

"Classical" Single photon detector  Photon source Photon number resolving (PNR) detector Mauro Rajteri, 12/06/2013 Panoramica INRIM 6/46

TES:

a superconducting film operated in the temperature region between the normal and the superconducting state

D

T c

~ 1 mK  high sensitive thermometer

t

(  s )

R I

bias

I tes

Workig Point

T c

~ 100 mK

T R

bias <<

R

tes D

T

 D

R @ Voltage bias

 D

I

I

Mauro Rajteri, 12/06/2013 Panoramica INRIM 7/46

TES:

a superconducting film operated in the temperature region between the normal and the superconducting state

D

T c

~ 1 mK  high sensitive thermometer

t

(  s )

R I

bias

1 ph

I tes

Workig Point

T c

~ 100 mK

T R

bias <<

R

tes D

T

 D

R @ Voltage bias

 D

I

I

Mauro Rajteri, 12/06/2013 Panoramica INRIM 8/46

TES:

a superconducting film operated in the temperature region between the normal and the superconducting state

D

T c

~ 1 mK  high sensitive thermometer

R

2 phs

I

bias

I tes

Working Point

T c

~ 100 mK

T R

bias <<

R

tes D

T

 D

R @ Voltage bias

 D

I

I t

(  s ) Mauro Rajteri, 12/06/2013 Panoramica INRIM 9/46

Bilayer – proximity effect Ti=24 nm, Au=54 nm

 

10 µm X10 µm 20 µm X 20 µm

Mauro Rajteri, 12/06/2013 Panoramica INRIM

T

c

∆T

c

R

n =121 mK = 2 mK = 0.220 Ω 10/46

P s P e P inc Superconductor - e g e-ph Superconductor - ph g ph-sub Substrate g sub-b Thermal bath T e T ph T sub g = thermal conductance

P s

K

(

T n

n T sub

)

K

= constant: material and geometry dependent

n

= constant: depends on the dominant thermal coupling mechanism T b For T < 1K  electron-phonon decoupling 

n

 5 Mauro Rajteri, 12/06/2013 Panoramica INRIM 11/46

D

E FWHM

 2 .

355 4

k

B

T c E sat n

2

E sat

CT c

Intrinsic Energy Resolution

∆E FWHM

is proportional to the operating temperature T

c

etf

 

th

 1  

n

 1 

T s n T c n

     1

Effective TES response time

etf

is lower than

th

if

/n >1

Mauro Rajteri, 12/06/2013 Panoramica INRIM 12/46

2w 0 z ~ 125  m 2 w (TES 20 x 20  m)  acc

~

58%

@1.55

m ÷

80%

@1.3

m Gaussian beam: w 0 =4.7/5.6

l

=1.3/1.55

m @

m

0,5 mm 1,5 mm 0,25 1mm Cu bracket 3 mm 0.8 mm Silicon Mauro Rajteri, 12/06/2013 Panoramica INRIM 13/46

 Optical coupling fiber-TES  Reflection and transmission of superconducting film  Antireflection coating or optical cavity a-Si 3 N 4 :Hy (low reflection index)

R(1550)=0.018%

a-SiH (high reflection index) Mauro Rajteri, 12/06/2013 Panoramica INRIM 14/46

Laser Attenuator Optical fiber INRIM: TES module D I TES Electronics & data aquisition SQUID current sensors (PTB) Mauro Rajteri, 12/06/2013 Panoramica INRIM 15/46

Mauro Rajteri, 12/06/2013 Panoramica INRIM 16/46

Mauro Rajteri, 12/06/2013 Panoramica INRIM 17/46

2000 1800 1600 1400 1200 1000 800 600 400 200 0 0 1 10

Noisy

: Δ

E

= 0.46 eV 2 20 3 4 30 amplitude [mV] 40 5 50 histogram noisy fit (a) 60 D. Alberto, et al,

Optical Transition-Edge Sensors Single Photon Pulse Analysis

, IEEE Trans. Appl. Supercond.,

21

, 285 – 288 (2011) 3000 2500 2000 1500 1000 500 0 0

Wiener filter: 2x improvement on

D

E

10

Wiener

: Δ

E

= 0.22 eV histogram Wiener fit (b) 20 30 amplitude [mV] 40 50 60 Mauro Rajteri, 12/06/2013 Panoramica INRIM 18/46

Mauro Rajteri, 12/06/2013 Panoramica INRIM 19/46



phs

20X20 μ m 2 l =1570 nm L. Lolli, et al.

J. Low Temp. Phys.

, vol. 167, pp. 803-808, 2012.

Mauro Rajteri, 12/06/2013 Panoramica INRIM 20/46

Klyshko

Detector to be Calibrated w

s

N 1 =  1 N

COUNTER

N 1

COINC COUNTER

N C N 2 =  2 N  1 =N C / N 2 N C =  1  2 N w

p

N

Absolute Quantum Efficiency PARAMETRIC CRYSTAL

w

i

“Herald” Detector N 2

COUNTER Drawback: Klyshko's technique is not able to exploit the PNR ability of the detector Proposal and demonstration of an absolute technique for measuring quantum efficiency, based on an heralded single photon source , but exploiting the PNR ability of the detector

A. Avella et al OPTICS EXPRESS 2011

19

p. 23249-23257 Mauro Rajteri, 12/06/2013 Panoramica INRIM 21/46

P H

(

i

)

P A

(

i

)

Probability of observing

i

photons per heralding count in the presence of the heralded photon Probability of observing

i

photons per heralding count in the absence of the heralded photon (i.e. of observing

i

“accidental” counts) The probability of observing

0

photons per heralding count :

P H

( 0 )   ( 1   )

P A

( 0 )  ( 1   )

P A

( 0 )     Non detection & No accidental False her.& No accidental

“Total” Quantum Efficiency of the PNR detector

optical and coupling losses

 

detector proper Quantum Efficiency

 

Probability of having a True Heralding Count (not due to stray-light or dark counts)

Mauro Rajteri, 12/06/2013 Panoramica INRIM 22/46

The probability of observing

i

photons per heralding count

P H

(

i

)   [( 1   )

P A

(

i

)  

P A

(

i

 1 )]  ( 1   )

P A

(

i

)

From each

P H

(

i

)

a value of “Total” Quantum Efficiency can be estimated

Consistency Test

From the probability of

0

 0 

P A

( 0 )  

P H P A

( 0 ) ( 0 )

From the probability of

i

i

P H

 [

P A

(

i

(

i

)   1 )

P A

 (

i P A

) (

i

)] Mauro Rajteri, 12/06/2013 Panoramica INRIM 23/46

PDC single photon source

Pump source HWP NLC TES detection system

b a

IF2 IF1 Mauro Rajteri, 12/06/2013 Panoramica INRIM 24/46

PUMP DET1 total quantum efficiency

6 Repeated measurements each 5 hr. long >5 10 6 counts

Heralded Accidental

@ 807 nm prob.

of true heralding counts Mauro Rajteri, 12/06/2013 Panoramica INRIM 25/46

POVM provides the description of the measurement process “

n

” Prob. of output “

n

” Mauro Rajteri, 12/06/2013 Panoramica INRIM 26/46

POVM provides the description of the measurement process “

n

” Prob. of output “

n

” Mauro Rajteri, 12/06/2013 Panoramica INRIM 27/46

POVM provides the description of the measurement process “

n

” Prob. of output “

n

” : Prob. of having output “

n

” with m photons as input Mauro Rajteri, 12/06/2013 Panoramica INRIM 28/46

Simplest Solution:

Fock state source

Mauro Rajteri, 12/06/2013 Panoramica INRIM 29/46

Simplest Solution:

Fock state source

Mauro Rajteri, 12/06/2013 Panoramica INRIM 30/46

Simplest Solution:

Fock state source

Affordable Solution:

Coherent source

[Lundeen et al., Nat. Phys

5

, 27 (2009)] Mauro Rajteri, 12/06/2013 Panoramica INRIM 31/46

Coherent source

Pulsed laser source Experiment with a TES

1570 nm

Mauro Rajteri, 12/06/2013 Panoramica INRIM 32/46

Coherent source

Pulsed laser source Experiment with a TES Mauro Rajteri, 12/06/2013 Panoramica INRIM 33/46

Coherent source

Pulsed laser source Experiment with a TES Mauro Rajteri, 12/06/2013 Panoramica INRIM 34/46

Coherent source

Linear detection model   =5.1% G. Brida et al New Journal of Physics 14 (2012) 085001 35/46

Joint Projects for the exchange of researchers within the Executive Programme Italy-Japan 2010-2012

Alignment: ADR cold finger

Mauro Rajteri, 12/06/2013 Panoramica INRIM 36/46

Mauro Rajteri, 12/06/2013 Panoramica INRIM 37/46

TiAu TES

T c

=301 mK

73

phs

l =1535 nm QE  50 %

@ 500 kHz means 3.65x10

6

photons/s (

473 fW

)

Mauro Rajteri, 12/06/2013 Panoramica INRIM 38/46

Mauro Rajteri, 12/06/2013 Panoramica INRIM 39/46

R n

=0.45  45nm Au+45nm Ti 10  m x 10  m

T c

=106 mK

C e

=0.35fJ/K Mauro Rajteri, 12/06/2013 Panoramica INRIM

R

(

T

,

I

) 

R n

2   1  tanh  

T

T c D

 

I

   

L I

C e T

 

I

bias IR

2

R s

( 

T I

 ,

R I

)

p

 

k R s

(

T

n

T s n

)

R

(

T

,

I

) 

G

 

nkT c n

 1  23  44 pW/K 40/46

eff

= 3.8

s

D

E

= (0.113 ± 0.001) eV

D

E

 2 2 ln 2  1

E

x

2  

x

1  (Submitted to APL) Mauro Rajteri, 12/06/2013 Panoramica INRIM 41/46

Mauro Rajteri, 12/06/2013 Panoramica INRIM 42/46

TES

 Photon number resolving detectors   Wavelength range: UV-IR   Quantum efficiency:50%  90%   Dark counts: background limited   Count rate:

1 MHz   Working temperature: < 1K  Mauro Rajteri, 12/06/2013 Panoramica INRIM 43/46

Sviluppo

 Fabbricazione: C. Portesi, E. Monticone Caratterizzazione : E. Taralli, L.Lolli , E. Monticone, M. Rajteri (criogenica, elettrica e ottica) E. Taralli, L. Callegaro (impedenza)

Taratura Applicazioni

 Ottica quantistica: A. Avella,G. Brida, L. Ciavarella, I. Degiovanni, M. Genovese, M. Gramegna, M.G. Mingolla,F. Piacentini, M.L. Rastello, P. Traina

Collaborazioni

 J. Beyer, D. Fukuda, T. Numata, M.G.A. Paris, M. White, G. Cantatore, G. Ventura Mauro Rajteri, 12/06/2013 Panoramica INRIM 44/46

2001-2004 -Fotorivelatori superconduttivi ad elettroni caldi per il VIS-IR -Realizzazione di STJ come rivelatori in regime di conteggio di fotoni per applicazioni astrofisiche

E45 (2006-2010)

Rivelatori superconduttivi a transizione di fase per conteggio di singoli fotoni Quantum Candela

(2008-2011) Progetto premiale P5 (2012-2013)

Oltre I limiti classici della misura

NEW08 MetNEMS (2012-2015)

Metrology with/for NEMS

Mauro Rajteri, 12/06/2013 Panoramica INRIM 45/46

Mauro Rajteri, 12/06/2013 Panoramica INRIM 46/46